
Scheduling the Future at Cloud Scale

Kubernetes

David K. Rensin

Compliments of

David K. Rensin

Kubernetes
Scheduling the Future at Cloud Scale

978-1-491-93599-6

[LSI]

Kubernetes
by David Rensin

Copyright © 2015 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com .

Editor: Brian Anderson
Production Editor: Matt Hacker
Interior Designer: David Futato

Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2015: First Edition

Revision History for the First Edition
2015-06-19: First Release
The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author(s) have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author(s) disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

http://safaribooksonline.com

Table of Contents

In The Beginning…. 1
Introduction 1
Who I Am 2
Who I Think You Are 3
The Problem 3

Go Big or Go Home!. 5
Introducing Kubernetes—Scaling through Scheduling 5
Applications vs. Services 6
The Master and Its Minions 7
Pods 10
Volumes 12
From Bricks to House 14

Organize, Grow, and Go. 15
Better Living through Labels, Annotations, and Selectors 15
Replication Controllers 18
Services 21
Health Checking 27
Moving On 30

Here, There, and Everywhere. 31
Starting Small with Your Local Machine 32
Bare Metal 33
Virtual Metal (IaaS on a Public Cloud) 33
Other Configurations 34
Fully Managed 35

iii

A Word about Multi-Cloud Deployments 36
Getting Started with Some Examples 36
Where to Go for More 36

iv | Table of Contents

In The Beginning…

Cloud computing has come a long way.

Just a few years ago there was a raging religious debate about
whether people and projects would migrate en masse to public
cloud infrastructures. Thanks to the success of providers like AWS,
Google, and Microsoft, that debate is largely over.

Introduction
In the “early days” (three years ago), managing a web-scale applica‐
tion meant doing a lot of tooling on your own. You had to manage
your own VM images, instance fleets, load balancers, and more. It
got complicated fast. Then, orchestration tools like Chef, Puppet,
Ansible, and Salt caught up to the problem and things got a little bit
easier.

A little later (approximately two years ago) people started to really
feel the pain of managing their applications at the VM layer. Even
under the best circumstances it takes a brand new virtual machine at
least a couple of minutes to spin up, get recognized by a load bal‐
ancer, and begin handling traffic. That’s a lot faster than ordering
and installing new hardware, but not quite as fast as we expect our
systems to respond.

Then came Docker.

Just In Case…

If you have no idea what containers are or how Docker
helped make them popular, you should stop reading
this paper right now and go here.

1

https://www.docker.com/whatisdocker/

So now the problem of VM spin-up times and image versioning has
been seriously mitigated. All should be right with the world, right?
Wrong.

Containers are lightweight and awesome, but they aren’t full VMs.
That means that they need a lot of orchestration to run efficiently
and resiliently. Their execution needs to be scheduled and managed.
When they die (and they do), they need to be seamlessly replaced
and re-balanced.

This is a non-trivial problem.

In this book, I will introduce you to one of the solutions to this chal‐
lenge—Kubernetes. It’s not the only way to skin this cat, but getting
a good grasp on what it is and how it works will arm you with the
information you need to make good choices later.

Who I Am
Full disclosure: I work for Google.

Specifically, I am the Director of Global Cloud Support and Services.
As you might imagine, I very definitely have a bias towards the
things my employer uses and/or invented, and it would be pretty
silly for me to pretend otherwise.

That said, I used to work at their biggest competitor—AWS—and
before that, I wrote a book for O’Reilly on Cloud Computing, so I do
have some perspective.

I’ll do my best to write in an evenhanded way, but it’s unlikely I’ll be
able to completely stamp out my biases for the sake of perfectly
objective prose. I promise to keep the preachy bits to a minimum
and keep the text as non-denominational as I can muster.

If you’re so inclined, you can see my full bio here.

Finally, you should know that the words you read are completely my
own. This paper does not reflect the views of Google, my family,
friends, pets, or anyone I now know or might meet in the future. I
speak for myself and nobody else. I own these words.

So that’s me. Let’s chat a little about you…

2 | In The Beginning…

http://shop.oreilly.com/product/0636920025993.do
http://www.linkedin.com/in/drensin

Who I Think You Are
For you to get the most out of this book, I need you to have accom‐
plished the following basic things:

1. Spun up at least three instances in somebody’s public cloud
infrastructure—it doesn’t matter whose. (Bonus points points if
you’ve deployed behind a load balancer.)

2. Have read and digested the basics about Docker and containers.
3. Have created at least one local container—just to play with.

If any of those things are not true, you should probably wait to read
this paper until they are. If you don’t, then you risk confusion.

The Problem
Containers are really lightweight. That makes them super flexible
and fast. However, they are designed to be short-lived and fragile. I
know it seems odd to talk about system components that are
designed to not be particularly resilient, but there’s a good reason for
it.

Instead of making each small computing component of a system
bullet-proof, you can actually make the whole system a lot more sta‐
ble by assuming each compute unit is going to fail and designing
your overall process to handle it.

All the scheduling and orchestration systems gaining mindshare
now— Kubernetes or others—are designed first and foremost with
this principle in mind. They will kill and re-deploy a container in a
cluster if it even thinks about misbehaving!

This is probably the thing people have the hardest time with when
they make the jump from VM-backed instances to containers. You
just can’t have the same expectation for isolation or resiliency with a
container as you do for a full-fledged virtual machine.

The comparison I like to make is between a commercial passenger
airplane and the Apollo Lunar Module (LM).

An airplane is meant to fly multiple times a day and ferry hundreds
of people long distances. It’s made to withstand big changes in alti‐
tude, the failure of at least one of its engines, and seriously violent

Who I Think You Are | 3

http://en.wikipedia.org/wiki/Apollo_Lunar_Module

winds. Discovery Channel documentaries notwithstanding, it takes
a lot to make a properly maintained commercial passenger jet fail.

The LM, on the other hand, was basically made of tin foil and balsa
wood. It was optimized for weight and not much else. Little things
could (and did during design and construction) easily destroy the
thing. That was OK, though. It was meant to operate in a near vac‐
uum and under very specific conditions. It could afford to be light‐
weight and fragile because it only operated under very orchestrated
conditions.

Any of this sound familiar?

VMs are a lot like commercial passenger jets. They contain full
operating systems—including firewalls and other protective systems
—and can be super resilient. Containers, on the other hand, are like
the LM. They’re optimized for weight and therefore are a lot less for‐
giving.

In the real world, individual containers fail a lot more than individ‐
ual virtual machines. To compensate for this, containers have to be
run in managed clusters that are heavily scheduled and orchestrated.
The environment has to detect a container failure and be prepared
to replace it immediately. The environment has to make sure that
containers are spread reasonably evenly across physical machines
(so as to lessen the effect of a machine failure on the system) and
manage overall network and memory resources for the cluster.

It’s a big job and well beyond the abilities of normal IT orchestration
tools like Chef, Puppet, etc….

4 | In The Beginning…

Go Big or Go Home!

If having to manage virtual machines gets cumbersome at scale, it
probably won’t come as a surprise to you that it was a problem Goo‐
gle hit pretty early on—nearly ten years ago, in fact. If you’ve ever
had to manage more than a few dozen VMs, this will be familiar to
you. Now imagine the problems when managing and coordinating
millions of VMs.

At that scale, you start to re-think the problem entirely, and that’s
exactly what happened. If your plan for scale was to have a stagger‐
ingly large fleet of identical things that could be interchanged at a
moment’s notice, then did it really matter if any one of them failed?
Just mark it as bad, clean it up, and replace it.

Using that lens, the challenge shifts from configuration management
to orchestration, scheduling, and isolation. A failure of one comput‐
ing unit cannot take down another (isolation), resources should be
reasonably well balanced geographically to distribute load (orches‐
tration), and you need to detect and replace failures near instantane‐
ously (scheduling).

Introducing Kubernetes—Scaling through
Scheduling
Pretty early on, engineers working at companies with similar scaling
problems started playing around with smaller units of deployment
using cgroups and kernel namespaces to create process separation.
The net result of these efforts over time became what we commonly
refer to as containers.

5

http://bit.ly/1InhtFB
http://bit.ly/1HZ0QUR
http://bit.ly/1Brc03t

Google necessarily had to create a lot of orchestration and schedul‐
ing software to handle isolation, load balancing, and placement.
That system is called Borg, and it schedules and launches approxi‐
mately 7,000 containers a second on any given day.

With the initial release of Docker in March of 2013, Google decided
it was finally time to take the most useful (and externalizable) bits of
the Borg cluster management system, package them up and publish
them via Open Source.

Kubernetes was born. (You can browse the source code here.)

Applications vs. Services
It is regularly said that in the new world of containers we should be
thinking in terms of services (and sometimes micro-services) instead
of applications. That sentiment is often confusing to a newcomer, so
let me try to ground it a little for you. At first this discussion might
seem a little off topic. It isn’t. I promise.

Danger—Religion Ahead!

To begin with, I need to acknowledge that the line
between the two concepts can sometimes get blurry,
and people occasionally get religious in the way they
argue over it. I’m not trying to pick a fight over philos‐
ophy, but it’s important to give a newcomer some
frame of reference. If you happen to be a more experi‐
enced developer and already have well-formed opin‐
ions that differ from mine, please know that I’m not
trying to provoke you.

A service is a process that:

1. is designed to do a small number of things (often just one).
2. has no user interface and is invoked solely via some kind of API.

An application, on the other hand, is pretty much the opposite of
that. It has a user interface (even if it’s just a command line) and
often performs lots of different tasks. It can also expose an API, but
that’s just bonus points in my book.

6 | Go Big or Go Home!

http://bit.ly/1CfMqta
http://bit.ly/1CfMqta
http://kubernetes.io/
http://bit.ly/1ubAK6h

It has become increasingly common for applications to call several
services behind the scenes. The web UI you interact with at https://
www.google.com actually calls several services behind the scenes.

Where it starts to go off the rails is when people refer to the web
page you open in your browser as a web application. That’s not nec‐
essarily wrong so much as it’s just too confusing. Let me try to be
more precise.

Your web browser is an application. It has a user interface and does
lots of different things. When you tell it to open a web page it con‐
nects to a web server. It then asks the web server to do some stuff via
the HTTP protocol.

The web server has no user interface, only does a limited number of
things, and can only be interacted with via an API (HTTP in this
example). Therefore, in our discussion, the web server is really a ser‐
vice—not an application.

This may seem a little too pedantic for this conversation, but it’s
actually kind of important. A Kubernetes cluster does not manage a
fleet of applications. It manages a cluster of services. You might run
an application (often your web browser) that communicates with
these services, but the two concepts should not be confused.

A service running in a container managed by Kubernetes is
designed to do a very small number of discrete things. As you design
your overall system, you should keep that in mind. I’ve seen a lot of
well meaning websites fall over because they made their services do
too much. That stems from not keeping this distinction in mind
when they designed things.

If your services are small and of limited purpose, then they can
more easily be scheduled and re-arranged as your load demands.
Otherwise, the dependencies become too much to manage and
either your scale or your stability suffers.

The Master and Its Minions
At the end of the day, all cloud infrastructures resolve down to phys‐
ical machines—lots and lots of machines that sit in lots and lots of
data centers scattered all around the world. For the sake of explana‐
tion, here’s a simplified (but still useful) view of the basic Kubernetes
layout.

The Master and Its Minions | 7

https://www.google.com
https://www.google.com
http://bit.ly/1LlSS73

Bunches of machines sit networked together in lots of data centers.
Each of those machines is hosting one or more Docker containers.
Those worker machines are called nodes.

Nodes used to be called minions and you will some‐
times still see them referred to in this way. I happen to
think they should have kept that name because I like
whimsical things, but I digress…

Other machines run special coordinating software that schedule
containers on the nodes. These machines are called masters. Collec‐
tions of masters and nodes are known as clusters.

Figure 2-1. The Basic Kubernetes Layout

That’s the simple view. Now let me get a little more specific.

Masters and nodes are defined by which software components they
run.

The Master runs three main items:

1. API Server—nearly all the components on the master and
nodes accomplish their respective tasks by making API calls.
These are handled by the API Server running on the master.

2. Etcd—Etcd is a service whose job is to keep and replicate the
current configuration and run state of the cluster. It is imple‐
mented as a lightweight distributed key-value store and was
developed inside the CoreOS project.

3. Scheduler and Controller Manager—These processes schedule
containers (actually, pods—but more on them later) onto target

8 | Go Big or Go Home!

https://coreos.com/

nodes. They also make sure that the correct numbers of these
things are running at all times.

A node usually runs three important processes:

1. Kubelet—A special background process (daemon that runs on
each node whose job is to respond to commands from the mas‐
ter to create, destroy, and monitor the containers on that host.

2. Proxy—This is a simple network proxy that’s used to separate
the IP address of a target container from the name of the service
it provides. (I’ll cover this in depth a little later.)

3. cAdvisor (optional)—http://bit.ly/1izYGLi[Container Advisor
(cAdvisor)] is a special daemon that collects, aggregates, pro‐
cesses, and exports information about running containers. This
information includes information about resource isolation, his‐
torical usage, and key network statistics.

These various parts can be distributed across different machines for
scale or all run on the same host for simplicity. The key difference
between a master and a node comes down to who’s running which
set of processes.

Figure 2-2. The Expanded Kubernetes Layout

If you’ve read ahead in the Kubernetes documentation, you might be
tempted to point out that I glossed over some bits—particularly on
the master. You’re right, I did. That was on purpose. Right now, the
important thing is to get you up to speed on the basics. I’ll fill in
some of the finer details a little later.

The Master and Its Minions | 9

http://bit.ly/1z9iphC

At this point in your reading I am assuming you have some basic
familiarity with containers and have created a least one simple one
with Docker. If that’s not the case, you should stop here and head
over to the main Docker site and run through the basic tutorial.

I have taken great care to keep this text “code free.” As
a developer, I love program code, but the purpose of
this book is to introduce the concepts and structure of
Kubernetes. It’s not meant to be a how-to guide to set‐
ting up a cluster.
For a good introduction to the kinds of configuration
files used for this, you should look here.
That said, I will very occasionally sprinkle in a few
lines of sample configuration to illustrate a point.
These will be written in YAML because that’s the for‐
mat Kubernetes expects for its configurations.

Pods
A pod is a collection of containers and volumes that are bundled and
scheduled together because they share a common resource—usually
a filesystem or IP address.

Figure 2-3. How Pods Fit in the Picture

Kubernetes introduces some simplifications with pods vs. normal
Docker. In the standard Docker configuration, each container gets
its own IP address. Kubernetes simplifies this scheme by assigning a
shared IP address to the pod. The containers in the pod all share the
same address and communicate with one another via localhost. In
this way, you can think of a pod a little like a VM because it basically
emulates a logical host to the containers in it.

10 | Go Big or Go Home!

http://docker.io
http://bit.ly/1d4AwvA
http://yaml.org/

This is a very important optimization. Kubernetes schedules and
orchestrates things at the pod level, not the container level. That
means if you have several containers running in the same pod they
have to be managed together. This concept—known as shared fate—
is a key underpinning of any clustering system.

At this point you might be thinking that things would be easier if
you just ran processes that need to talk to each other in the same
container.

You can do it, but I really wouldn’t. It’s a bad idea.

If you do, you undercut a lot of what Kubernetes has to offer. Specif‐
ically:

1. Management Transparency—If you are running more than
one process in a container, then you are responsible for moni‐
toring and managing the resources each uses. It is entirely possi‐
ble that one misbehaved process can starve the others within the
container, and it will be up to you to detect and fix that. On the
other hand, if you separate your logical units of work into sepa‐
rate containers, Kubernetes can manage that for you, which will
make things easier to debug and fix.

2. Deployment and Maintenance—Individual containers can be
rebuilt and redeployed by you whenever you make a software
change. That decoupling of deployment dependencies will make
your development and testing faster. It also makes it super easy
to rollback in case there’s a problem.

3. Focus—If Kubernetes is handling your process and resource
management, then your containers can be lighter. You can focus
on your code instead of your overhead.

Another key concept in any clustering system—including Kuber‐
netes—is lack of durability. Pods are not durable things, and you
shouldn’t count on them to be. From time to time (as the overall
health of the cluster demands), the master scheduler may choose to
evict a pod from its host. That’s a polite way of saying that it will
delete the pod and bring up a new copy on another node.

You are responsible for preserving the state of your application.

That’s not as hard as it may seem. It just takes a small adjustment to
your planning. Instead of storing your state in memory in some

Pods | 11

non-durable way, you should think about using a shared data store
like Redis, Memcached, Cassandra, etc.

That’s the architecture cloud vendors have been preaching for years
to people trying to build super-scalable systems—even with more
long-lived things like VMs—so this ought not come as a huge sur‐
prise.

There is some discussion in the Kubernetes community about trying
to add migration to the system. In that case, the current running
state (including memory) would be saved and moved from one
node to another when an eviction occurs. Google introduced some‐
thing similar recently called live migration to its managed VM offer‐
ing (Google Compute Engine), but at the time of this writing, no
such mechanism exists in Kubernetes.

Sharing and preserving state between the containers in your pod,
however, has an even easier solution: volumes.

Volumes
Those of you who have played with more than the basics of Docker
will already be familiar with Docker volumes. In Docker, a volume is
a virtual filesystem that your container can see and use.

An easy example of when to use a volume is if you are running a
web server that has to have ready access to some static content. The
easy way to do that is to create a volume for the container and pre-
populate it with the needed content. That way, every time a new
container is started it has access to a local copy of the content.

So far, that seems pretty straightforward.

Kubernetes also has volumes, but they behave differently. A Kuber‐
netes volume is defined at the pod level—not the container level.
This solves a couple of key problems.

1. Durability—Containers die and are reborn all the time. If a vol‐
ume is tied to a container, it will also go away when the con‐
tainer dies. If you’ve been using that space to write temporary
files, you’re out of luck. If the volume is bound to the pod, on
the other hand, then the data will survive the death and rebirth
of any container in that pod. That solves one headache.

12 | Go Big or Go Home!

2. Communication—Since volumes exist at the pod level, any
container in the pod can see and use them. That makes moving
temporary data between containers super easy.

Figure 2-4. Containers Sharing Storage

Because they share the same generic name—volume—it’s important
to always be clear when discussing storage. Instead of saying “I have
a volume that has…,” be sure to say something like “I have a con‐
tainer volume,” or “I have a pod volume.” That will make talking to
other people (and getting help) a little easier.

Kubernetes currently supports a handful of different pod volume
types—with many more in various stages of development in the
community. Here are the three most popular types.

EmptyDir
The most commonly used type is EmptyDir.

This type of volume is bound to the pod and is initially always
empty when it’s first created. (Hence the name!) Since the volume is
bound to the pod, it only exists for the life of the pod. When the pod
is evicted, the contents of the volume are lost.

For the life of the pod, every container in the pod can read and write
to this volume—which makes sharing temporary data really easy. As
you can imagine, however, it’s important to be diligent and store
data that needs to live more permanently some other way.

In general, this type of storage is known as ephemeral. Storage whose
contents survive the life of its host is known as persistent.

Volumes | 13

Network File System (NFS)
Recently, Kubernetes added the ability to mount an NFS volume at
the pod level. That was a particularly welcome enhancement because
it meant that containers could store and retrieve important file-
based data—like logs—easily and persistently, since NFS volumes
exists beyond the life of the pod.

GCEPersistentDisk (PD)
Google Cloud Platform (GCP) has a managed Kubernetes offering
named GKE. If you are using Kubernetes via GKE, then you have
the option of creating a durable network-attached storage volume
called a persistent disk (PD) that can also be mounted as a volume on
a pod. You can think of a PD as a managed NFS service. GCP will
take care of all the lifecycle and process bits and you just worry
about managing your data. They are long-lived and will survive as
long as you want them to.

From Bricks to House
Those are the basic building blocks of your cluster. Now it’s time to
talk about how these things assemble to create scale, flexibility, and
stability.

14 | Go Big or Go Home!

http://bit.ly/1N9hZvb
http://cloud.google.com/

Organize, Grow, and Go

Once you start creating pods, you’ll quickly discover how important
it is to organize them. As your clusters grow in size and scope, you’ll
need to use this organization to manage things effectively. More
than that, however, you will need a way to find pods that have been
created for a specific purpose and route requests and data to them.
In an environment where things are being created and destroyed
with some frequency, that’s harder than you think!

Better Living through Labels, Annotations,
and Selectors
Kubernetes provides two basic ways to document your infrastruc‐
ture—labels and annotations.

Labels
A label is a key/value pair that you assign to a Kubernetes object (a
pod in this case). You can use pretty well any name you like for your
label, as long as you follow some basic naming rules. In this case, the
label will decorate a pod and will be part of the pod.yaml file you
might create to define your pods and containers.

Let’s use an easy example to demonstrate. Suppose you wanted to
identify a pod as being part of the front-end tier of your application.
You might create a label named tier and assign it a value of frontend
—like so:

“labels”: {

“tier”: “frontend”

15

}

The text “tier” is the key, and the text “frontend” is the value.

Keys are a combination of zero or more prefixes followed by a “/”
character followed by a name string. The prefix and slash are
optional. Two examples:

“application.game.awesome-game/tier”

“tier”

In the first case, “application.game.awesome-game” is the prefix, and
“tier” is the name. In the second example there is no prefix.

You have to make sure that your labels conform to the same rules as
regular DNS entries—known as DNS Labels.

The prefix part of the key can be one or more DNS Labels separated
by “.” characters. The total length of the prefix (including dots) can‐
not exceed 253 characters.

Values have the same rules but cannot be any longer than 63 charac‐
ters.

Neither keys nor values may contain spaces.

Um…That Seems a Little “In the Weeds”

I’m embarrassed to tell you how many times I’ve tried
to figure out why a certain request didn’t get properly
routed to the right pod only to discover that my label
was too long or had an invalid character. Accordingly, I
would be remiss if didn’t at least try to keep you from
suffering the same pain!

Label Selectors
Labels are queryable—which makes them especially useful in organ‐
izing things. The mechanism for this query is a label selector.

Heads Up!

You will live and die by your label selectors. Pay close
attention here!

16 | Organize, Grow, and Go

http://bit.ly/1L5XC2K

A label selector is a string that identifies which labels you are trying
to match.

There are two kinds of label selectors—equality-based and set-based.

An equality-based test is just a “IS/IS NOT” test. For example:

tier = frontend

will return all pods that have a label with the key “tier” and the value
“frontend”. On the other hand, if we wanted to get all the pods that
were not in the frontend tier, we would say:

tier != frontend

You can also combine requirements with commas like so:

tier != frontend, game = super-shooter-2

This would return all pods that were part of the game named “super-
shooter-2” but were not in its front end tier.

Set-based tests, on the other hand, are of the “IN/NOT IN” variety.
For example:

environment in (production, qa)
tier notin (frontend, backend)
partition

The first test returns pods that have the “environment” label and a
value of either “production” or “qa”. The next test returns all the
pods not in the front end or back end tiers. Finally, the third test will
return all pods that have the “partition” label—no matter what value
it contains.

Like equality-based tests, these can also be combined with commas
to perform an AND operation like so:

environment in (production, qa), tier notin (frontend, back-
end), partition

This test returns all pods that are in either the production or qa
environment, also not in either the front end or back end tiers, and
have a partition label of some kind.

Annotations
Annotations are bits of useful information you might want to store
about a pod (or cluster, node, etc.) that you will not have to query

Better Living through Labels, Annotations, and Selectors | 17

against. They are also key/value pairs and have the same rules as
labels.

Examples of things you might put there are the pager contact, the
build date, or a pointer to more information someplace else—like a
URL.

Labels are used to store identifying information about a thing that
you might need to query against. Annotations are used to store
other arbitrary information that would be handy to have close but
won’t need to be filtered or searched.

It Might Be Boring, but…
I know that labeling and annotating bits of cluster infrastructure is
nobody’s idea of a hootenanny. You need to do it, though. Really.
Label selectors are the central means of routing and orchestration,
so you need to have good labeling hygiene to make things work well.

If you don’t, your requests will probably never get routed correctly
to your pods!

If you don’t take the time upfront to label and annotate at least the
big pieces, you will regret it dearly when it comes time to run your
clusters day-to-day. You don’t have to write War and Peace, but you
need to write something.

Replication Controllers
If you’re building an application that needs to handle a lot of load or
have a lot of availability, you clearly are going to want more than
one pod running at a time. This is no different than having multiple
data centers (back in the days when we all ran our own hardware) or
having multiple VMs running behind some kind of load-balancing
service. It’s just simple common sense.

Multiple copies of a pod are called replicas. They exist to provide
scale and fault-tolerance to your cluster.

The process that manages these replicas is the replication controller.
Specifically, the job of the replication controller is to make sure that
the correct number of replicas are running at all times. That’s its
prime directive. Anything else it may do is to serve that end.

This means that the controller will create or destroy replicas as it
needs to in order to maintain that objective.

18 | Organize, Grow, and Go

http://bit.ly/1fmfiuS
http://bit.ly/1K1JeI9

The way the controller does this is by following a set of rules you
define in a pod template. The pod template is a specific definition
you provide about the desired state of the cluster. You specify which
images will be used to startup each pod, how many replicas there
will be, and other state-related things. (The pod.yaml file I refer‐
enced back in the Labels section is an example of this template.)

The Gestalt of a Replication Controller
The whole replication scheme in Kubernetes is designed to be loosely
coupled. What I mean by that is that you don’t actually tell a control‐
ler which pods you want it to control. Instead, you define the label
selector it will use. Pods that match that query will be managed by
the controller.

In addition, if you kill a replication controller it will not delete the
replicas it has under management. (For that, you have to explicitly
set the controller’s replicas field to 0.)

This design has a number of interesting benefits:

• First, if you want to remove a pod from service for debugging—
but not delete it—you just need to change its label so that it no
longer matches the label selector used by the controller. That
will lower the number of replicas managed by the controller by
1, so it will automatically start a new replica to compensate.

• Next, you can change the label selector used by the controller to
cause it to assume control over an entirely different fleet in real-
time.

• Finally, you can kill a replication controller and start a new one
in its place and your pods will be none-the-wiser.

Nothing Lasts Forever

Replication controllers will die. Count on it. So plan
accordingly!

You can usually count on a replication controller to be more long-
lived than any one pod (and certainly more than any one container),
but you should not think of them as invincible. They aren’t. A well-

Replication Controllers | 19

designed cluster has at least two controllers running at all times so
that they can avoid any single points of failure (SPOF).

That’s a good thing, because SPOFs are the death of any high-
availability system.

Scheduling != Scaling
Since replication controllers are concerned only with making sure
that the correct numbers of pods are running at any one time, they
are great for availability. All your replication controllers and clusters
would have to fail (or be unreachable owing to network failure) for
your service to be unavailable. That sounds pretty good, right?

What you may have noticed, however, is that we haven’t talked
about how you dynamically size your cluster as your load increases
or decreases. With just the components we’ve discussed so far, you
will always have a fixed-size cluster. That might be highly available,
but it won’t be very cost effective during off-peak hours.

For that, you will need something sitting in front of your cluster that
understands your business logic for scaling—usually a load balancer
or traffic shaper. The basic idea is that requests coming from your
users will hit a front end load balancer and be directed to your clus‐
ter. As the traffic increases to the load balancer—commonly meas‐
ured in queries per second (QPS)—the balancer will change the repli‐
cas value in the controller and more pods will be created. As the
load abates, the reverse will happen.

There are some finer details I’m glossing over, but I’ll cover them in
more depth when we look at services. For those of you who want to
dig into some really interesting reading about how a controller
decides to evict and replace a pod, I recommend this article.

The Best Time to Use a Replication Controller Is…
Always! (Really).

Replication controllers are always a good idea—even for the sim‐
plest configurations.

Even if you have a situation where you only need to run one con‐
tainer in one pod, it’s still a good idea to use a replication controller
because when that pod unexpectedly dies (and it will from time to
time) you want a new one to automatically take its place. It’s a pretty

20 | Organize, Grow, and Go

http://bit.ly/1K1JiHH

simple matter to create a controller with a replica count of 1 and
then just let it run.

Replication controllers also make zero-downtime rolling updates
much easier. Once upon a time, nearly every system went down for
at least a few minutes once and a while for “scheduled maintenance.”
That’s completely unacceptable now.

We expect our services to be available 24/7/365. Realistically, every
service goes down at least a little bit every year so most really rock
solid services aim for “five 9s” of uptime—99.999%. That means a
service can only be unavailable .001% of the time—a mere 5.26
minutes a year.

Good luck scheduling your maintenance in that window!

Replication controllers let us do cost-effective rolling updates. We
start by bringing up a new controller with 1 updated replica and
then removing 1 replica from the old controller. We keep doing this
+1/-1 dance until the new controller has the number of replicas we
need and the old controller is empty. Then we just delete the old
controller.

If we’re careful, we can make sure that the total number of replicas
across both controllers never exceeds the capacity we wanted to pay
for. It’s an exceptionally cost-effective and safe way to roll out (and
roll back) new code without having any scheduled downtime.

Services
Now you have a bunch of pods running your code in a distributed
cluster. You have a couple of replication controllers alive to manage
things, so life should be good.

Well…Almost…

The replication controller is only concerned about making sure the
right number of replicas is constantly running. Everything else is up
to you. Particularly, it doesn’t care if your public-facing application
is easily findable by your users. Since it will evict and create pods as
it sees fit, there’s no guarantee that the IP addresses of your pods will
stay constant—in fact, they almost certainly will not.

That’s going to break a lot of things.

Services | 21

For example, if you’re application is multi-tiered, then unplanned IP
address changes in your backend may make it impossible for your
frontend to connect. Similarly, a load balancer sitting in front of
your frontend tier won’t know where to route new traffic as your
pods die and get new IP addresses.

The way Kubernetes solves this is through services.

A service is a long-lived, well-known endpoint that points to a set of
pods in your cluster. It consists of three things—an external IP
address (known as a portal, or sometimes a portal IP), a port, and a
label selector.

Figure 3-1. Services Hide Orchestration

The service is exposed via a small proxy process. When a request
comes in for an endpoint you want to expose, the service proxy
decides which pod to route it to via a label selector. Just like with a
replication controller, the use of a label selector lets us keep fluid
which pods will service which request.

Since pods will be created and evicted with unknown frequency, the
service proxy acts as a thin lookup service to figure out how to han‐
dle requests. The service proxy is therefore nothing more than a
tuple that maps a portal, port, and label selector. It’s a kind of dictio‐
nary for your traffic, not unlike DNS.

22 | Organize, Grow, and Go

The Life of a Client Request
There are enough moving parts to this diagram that now’s a good
time to talk about how they work together. Let’s suppose you have a
mobile device that is going to connect to some application API run‐
ning in your cluster via REST over HTTPS. Here’s how that goes:

1. The client looks up your endpoint via DNS and attempts a con‐
nection

2. More likely than not, that endpoint is some kind of frontend
load balancer. This load balancer figures out which cluster it
wants to route the request to and then sends the request along
to the portal IP for the requested service.

3. The proxy service uses a label selector to decide which pods are
available to send the request to and then forwards the query on
to be serviced.

It’s a pretty straightforward workflow, but its design has some inter‐
esting and useful features.

First, there’s no guarantee that the pod that serviced one request will
service the next one—even if it’s very close in time or from the same
client. The consequence of that is that you have to make sure your
pods don’t keep state ephemerally.

Second, there’s no guarantee that the pod that serviced the request
will even exist when the next request comes in. It’s entirely possible
that it will be evicted for some reason and replaced by the replica‐
tion controller. That’s completely invisible to your user because
when that change happens the evicted pod will no longer match the
service label selector and the new one will.

In practice, this happens in less than a second. I’ve personally meas‐
ured this de-registration / eviction / replacement / registration cycle
and found it to take on the order of 300 milliseconds. Compare that
to replacing a running VM instance behind a load balancer. That
process is almost always on the order of minutes.

Lastly, you can tinker with which pods service which requests just
by playing with the label selector or changing labels on individual
pods. If you’re wondering why you’d want to do that, imagine trying
to A/B test a new version of your web service in real-time using sim‐
ple DNS.

Services | 23

You also might be wondering how a service proxy decides which pod
is going to service the request if more than one matches the label
selector. As of this writing, the answer is that it uses simple round-
robin routing. There are efforts in progress in the community to
have pods expose other run-state information to the service proxy
and for the proxy to use that information to make business-based
routing decisions, but that’s still a little ways off.

Of course, these advantages don’t just benefit your end clients. Your
pods will benefit as well. Suppose you have a frontend pod that
needs to connect to a backend pod. Knowing that the IP address of
your backend pod can change pretty much anytime, it’s a good idea
to have your backend expose itself as a service to which only your
frontend can connect.

The analogy is having frontend VMs connect to backend VMs via
DNS instead of fixed IPs.

That’s the best practice, and you should keep it in mind as we dis‐
cuss some of the fine print around services.

A Few of the Finer Points about Integration with Legacy
Stuff
Everything you just read is always true if you use the defaults. Like
most systems, however, Kubernetes lets you tweak things for your
specific edge cases. The most common of these edge cases is when
you need your cluster to talk to some legacy backend like an older
production database.

To do that, we have to talk a little bit about how different services
find one another—from static IP address maps all the way to fully
clustered DNS.

Selector-less Services
It is possible to have services that do not use label selectors. When
you define your service you can just give it a set of static IPs for the
backend processes you want it to represent. Of course, that removes
one of the key advantages of using services in the first place, so
you’re probably wondering why you would ever do such a thing.

Sometimes you will have non-Kubernetes backend things you need
your pods to know about and connect to. Perhaps you will need
your pods to connect to some legacy backend database that is run‐

24 | Organize, Grow, and Go

ning in some other infrastructure. In that case you have a choice.
You could:

1. Put the IP address (or DNS name) of the legacy backend in each
pod, or

2. Create a service that doesn’t route to a Kubernetes pod, but to
your other legacy service.

Far and away, (2) is your better choice.

1. It fits seamlessly into your regular architecture—which makes
change management easier. If the IP address of the legacy back‐
end changes, you don’t have to re-deploy pods. You just change
the service configuration.

2. You can have the frontend tier in one cluster easily point to the
backend tier in another cluster just by changing the label selec‐
tor for the service. In certain high-availability (HA) situations,
you might need to do this as a fallback until you get things
working correctly with your primary backend tier.

3. DNS is slow (minutes), so relying on it will seriously degrade
your responsiveness. Lots of software caches DNS entries, so the
problem gets even worse.

Service Discovery with Environment Variables
When a pod wants to consume another service, it needs a way to do
a lookup and figure out how to connect.

Kubernetes provides two such mechanisms—environment variable
and DNS.

When a pod exposes a service on a node, Kubernetes creates a set of
environment variables on that node to describe the new service.
That way, other pods on the same node can consume it easily.

As you can imagine, managing discovery via environment variables
is not super scalable, so Kubernetes gives us a second way to do it:
Cluster DNS.

Cluster DNS
In a perfect world, there would be a resilient service that could let
any pod discover all the services in the cluster. That way, different

Services | 25

tiers could talk to each other without having to worry about IP
addresses and other fragile schemes.

That’s where cluster DNS comes in.

You can configure your cluster to schedule a pod and service that
expose DNS. When new pods are created, they are told about this
service and will use it for lookups—which is pretty handy.

These DNS pods contains three special containers:

1. Etcd—Which will store all the actual lookup information
2. SkyDns—A special DNS server written to read from etcd. You

can find out more about it here.
3. Kube2sky—A Kubernetes-specific program that watches the

master for any changes to the list of services and then publishes
the information into etcd. SkyDns will then pick it up.

You can instructions on how to configure this for yourself here.

Exposing Your Services to the World
OK!

Now your services can find each other. At some point, however, you
will probably want to expose some of the services in your cluster to
the rest of the world. For this, you have three basic choices: Direct
Access, DIY Load Balancing, and Managed Hosting.

Option #1: Direct Access
The simplest thing for you to do is to configure your firewall to pass
traffic from the outside world to the portal IP of your service. The
proxy on that node will then pick which container should service
the request.

The problem, of course, is that this strategy is not particularly fault
tolerant. You are limited to just one pod to service the request.

Option #2: DIY Load Balancing
The next thing you might try is to put a load balancer in front of
your cluster and populate it with the portal IPs of your service. That
way, you can have multiple pods available to service requests. A
common way to do this is to just setup instances of the super popu‐
lar HAProxy software to handle this.

26 | Organize, Grow, and Go

http://bit.ly/1ChhPeL
http://bit.ly/1d5PEJf
http://www.haproxy.org/

That’s better, to be sure, but there’s still a fair amount of configura‐
tion and maintenance you will need to do—especially if you want to
dynamically size your load balancer fleet under load.

A really good getting-started tutorial on doing this with HAProxy
can be found here. If you’re planning on deploying Kubernetes on
bare metal (as opposed to in a public cloud) and want to roll your
own load balancing, then I would definitely read that doc.

Option #3: Managed Hosting
All the major cloud providers that support Kubernetes also provide
a pretty easy way to scale out your load. When you define your ser‐
vice, you can include a flag named CreateExternalLoadBalancer and
set its value to true.

When you do this, the cloud provider will automatically add the
portal IPs for your service to a fleet of load balancers that it creates
on your behalf. The mechanics of this will vary from provider to
provider.

You can find documentation about how to do this on Google’s man‐
aged Kubernetes offering (GKE) here.

Health Checking
Do you write perfect code? Yeah. Me neither.

One of the great things about Kubernetes is that it will evict degra‐
ded pods and replace them so that it can make sure you always have
a system performing reliably at capacity. Sometimes it can do this
for you automatically, but sometimes you’ll need to provide some
hints.

Low-Level Process Checking
You get this for free in Kubernetes. The Kubelet running on each
node will talk to the Docker runtime to make sure that the contain‐
ers in your pods are responding. If they aren’t, they will be killed and
replaced.

The problem, of course, is that you have no ability to finesse what it
means for a container to be considered healthy. In this case, only a
bare minimum of checking is occurring—e.g., whether the container
process is still running.

Health Checking | 27

http://bit.ly/1eufI2r
http://bit.ly/1Svwmgo

That’s a pretty low bar. Your code could be completely hung and
non-responsive and still pass that test. For a reliable production sys‐
tem, we need more.

Automatic Application Level Checking
The next level of sophistication we can employ to test the health of
our deployment is automatic health checking. Kubernetes supports
some simple probes that it will run on your behalf to determine the
health of your pods.

When you configure the Kubelet for your nodes, you can ask it to
perform one of three types of health checks.

TCP Socket
For this check you tell the Kubelet which TCP port you want to
probe and how long it should take to connect. If the Kubelet cannot
open a socket to that port on your pod in the allotted time period, it
will restart the pod.

HTTP GET
If your pod is serving HTTP traffic, a simple health check you can
configure is to ask the Kubelet to periodically attempt an HTTP
GET from a specific URL. For the pod to register as healthy, that
URL fetch must:

1. Return a status code between 200 and 399
2. Return before the timeout interval expires

Container Exec
Finally, your pod might not already be serving HTTP, and perhaps a
simple socket probe is not enough. In that case, you can configure
the Kubelet to periodically launch a command line inside the con‐
tainers in your pod. If that command exits with a status code of 0
(the normal “OK” code for a Unix process) then the pod will be
marked as healthy.

Configuring Automatic Health Checks
The following is a snippet from a pod configuration that enables a
simple HTTP health check. The Kubelet will periodically probe the

28 | Organize, Grow, and Go

URL /_status/healthz on port 8080. As long as that fetch returns a
code between 200-399, everything will be marked healthy.

 livenessProbe:

 # turn on application health checking

 enabled: true

 type: http

 # length of time to wait for a pod to initialize

 # after pod startup, before applying health checking

 initialDelaySeconds: 30

 # an http probe

 httpGet:

 path: /_status/healthz

 port: 8080

Health check configuration is set in the livenessProbe section.

One interesting thing to notice is the initialDelaySeconds setting. In
this example, the Kubelet will wait 30 seconds after the pod starts
before probing for health. This gives your code time to initialize and
start your listening threads before the first health check. Otherwise,
your pods would never be considered healthy because they would
always fail the first check!

Manual Application Level Checking
As your business logic grows in scope, so will the complexity of
what you might consider “healthy” or “unhealthy.” It won’t be long
before you won’t be able to simply use the automatic health checks
to maintain availability and performance.

For that, you’re going to want to implement some business rule
driven manual health checks.

The basic idea is this:

Health Checking | 29

1. You run a special pod in your cluster designed to probe your
other pods and take the results they give you and decide if
they’re operating correctly.

2. If a pod looks unhealthy, you change one of its labels so that it
no longer matches the label selector the replication controller is
testing against.

3. The controller will detect that the number of required pods is
less than the value it requires and will start a replacement pod.

4. Your health check code can then decide whether or not it wants
to delete the malfunctioning pod or simply keep it out of service
for further debugging.

If this seems familiar to you, it’s because this process is very similar
to the one I introduced earlier when we discussed rolling updates.

Moving On
That covers the what and how parts of the picture. You know what
the pieces are and how they fit together. Now it’s time to move on to
where they will all run.

30 | Organize, Grow, and Go

Here, There, and Everywhere

So here we are, 30 pages or so later, and you now have a solid under‐
standing of what Kubernetes is and how it works. By this point in
your reading I hope you’ve started to form an opinion about
whether or not Kubernetes is a technology that makes sense to you
right now.

In my opinion, it’s clearly the direction the world is heading, but you
might think it’s a little too bleeding edge to invest in right this sec‐
ond. That is only the first of two important decisions you have to
make.

Once you’ve decided to keep going, the next question you have to
answer is this: do I roll my own or use someone’s managed offering?

You have three basic choices:

1. Use physical servers you own (or will buy/rent) and install
Kubernetes from scratch. Let’s call this option the bare metal
option. You can take this route if you have these servers in your
office or you rent them in a CoLo. It doesn’t matter. The key
thing is that you will be dealing with physical machines.

2. Use virtual machines from a public cloud provider and install
Kubernetes on them from scratch. This has the obvious advan‐
tage of not needing to buy physical hardware, but is very differ‐
ent than the bare metal option, because there are important
changes to your configuration and operation. Let’s call this the
virtual metal option.

3. Use one of the managed offerings from the major cloud provid‐
ers. This route will allow you fewer configuration choices, but

31

will be a lot easier than rolling your own solution. Let’s call this
the fully managed option.

Starting Small with Your Local Machine
Sometimes the easiest way to learn something is to install it locally
and start poking at it. Installing a full bare metal Kubernetes solu‐
tion is not trivial, but you can start smaller by running all the com‐
ponents on your local machine.

Linux
If you’re running Linux locally—or in a VM you can easily access—
then it’s pretty easy to get started.

1. Install Docker and make sure it’s in your path. If you already
have Docker installed, then make sure it’s at least version 1.3 by
running the docker --version command.

2. Install etcd, and make sure it’s in your path.
3. Make sure go is installed and also in your path. Check to make

sure your version is also at least 1.3 by running go version.

Once you’ve completed these steps you should follow along with this
getting started guide. It will tell you everything you need to know to
get up and running.

Windows/Mac
If you’re on Windows or a Mac, on the other hand, the process is a
little (but not much) more complicated. There are a few different
ways to do it, but the one I’m going to recommend is to use a tool
called Vagrant.

Vagrant is an application that automatically sets up and manages
self-contained runtime environments. It was created so that different
software developers could be certain that each of them was running
an identical configuration on their local machines.

The basic idea is that you install a copy of Vagrant and tell it that
you want to create a Kubernetes environment. It will run some
scripts and set everything up for you. You can try this yourself by
following along with the handy setup guide here.

32 | Here, There, and Everywhere

https://docs.docker.com/installation/#installation
https://github.com/coreos/etcd/releases
https://golang.org/doc/install
http://bit.ly/1Gv5WG7
http://bit.ly/1Gv5WG7
http://www.wagrantup.com
http://bit.ly/1N6Ua7j

Bare Metal
After you’ve experimented a little and have gotten the feel for instal‐
ling and configuring Kubernetes on your local machine, you might
get the itch to deploy a more realistic configuration on some spare
servers you have lying around. (Who among us doesn’t have a few
servers sitting in a closet someplace?)

This setup—a fully bare metal setup—is definitely the most difficult
path you can choose, but it does have the advantage of keeping
absolutely everything under your control.

The first question you should ask yourself is do you prefer one Linux
distribution over another? Some people are really familiar with
Fedora or RHEL, while others are more in the Ubuntu or Debian
camps. You don’t need to have a preference—but some people do.

Here are my recommendations for soup-to-nuts getting-started
guides for some of the more popular distributions:

1. Fedora, RHEL—There are many such tutorials, but I think the
easiest one is here. If you’re looking for something that goes into
some of the grittier details, then this might be more to your lik‐
ing.

2. Ubuntu—Another popular choice. I prefer this guide, but a
quick Google search shows many others.

3. CentOS—I’ve used this guide and found it to be very helpful.
4. Other—Just because I don’t list a guide for your preferred dis‐

tribution doesn’t mean one doesn’t exist or that the task is undo‐
able. I found a really good getting-started guide that will apply
to pretty much any bare metal installation here.

Virtual Metal (IaaS on a Public Cloud)
So maybe you don’t have a bunch of spare servers lying around in a
closet like I do—or maybe you just don’t want to have to worry
about cabling, power, cooling, etc. In that case, it’s a pretty straight‐
forward exercise to build your own Kubernetes cluster from scratch
using VMs you spin up on one of the major public clouds.

Bare Metal | 33

http://bit.ly/1J6rHQj
http://bit.ly/1GTcobA
http://bit.ly/1Rdt6Uj
http://bit.ly/1In9fgR
http://bit.ly/1In9p7W

This is a different process than installing on bare metal
because your choice of network layout and configura‐
tion is governed by your choice of provider.
Whichever bare metal guides you may have read in the
previous section will only be mostly helpful in a public
cloud.

Here are some quick resources to get you started.

1. AWS—The easiest way is to use this guide, though it also points
you to some other resources if you’re looking for a little more
configuration control.

2. Azure—Are you a fan of Microsoft Azure? Then this is the
guide for you.

3. Google Cloud Platform (GCP)—I’ll bet it won’t surprise you to
find out that far and away the most documented way to run
Kubernetes in the virtual metal configuration is for GCP. I
found hundreds of pages of tips and setup scripts and guides,
but the easiest one to start with is this guide.

4. Rackspace—A reliable installation guide for Rackspace has
been a bit of a moving target. The most recent guide is here, but
things seem to change enough every few months such that it is
not always perfectly reliable. You can see a discussion on this
topic here. If you’re an experienced Linux administrator then
you can probably work around the rough edges reasonably
easily. If not, you might want to check back later.

Other Configurations
The previous two sections are by no means an exhaustive list of
configuration options or getting-started guides. If you’re interested
in other possible configurations, then I recommend two things:

1. Start with this list. It’s continuously maintained at the main
Kubernetes Github site and contains lots of really useful point‐
ers.

2. Search Google. Really. Things are changing a lot in the Kuber‐
netes space. New guides and scripts are being published nearly
every day. A simple Google search every now and again will
keep you up to date. If you’re like me and you absolutely want to

34 | Here, There, and Everywhere

http://bit.ly/1LlKxQR
http://bit.ly/1Br3HES
http://bit.ly/1RdtRwy
http://bit.ly/1JY5dkD
http://bit.ly/1dMSByQ
http://bit.ly/1CfJWLn

know as soon as something new pops up, then I recommend
you set up a Google alert. You can start here.

Fully Managed
By far, your easiest path into the world of clusters and global scaling
will be to use a fully managed service provided by one of the large
public cloud providers (AWS, Google, and Microsoft). Strictly
speaking, however, only one of them is actually Kubernetes.

Let me explain.

Amazon recently announced a brand new managed offering named
Elastic Container Service (ECS). It’s designed to manage Docker
containers and shares many of the same organizing principles as
Kubernetes. It does not, however, appear to actually use Kubernetes
under the hood. AWS doesn’t say what the underlying technology is,
but there are enough configuration and deployment differences that
it appears they have rolled their own solution. (If you know differ‐
ently, please feel free to email me and I’ll update this text accord‐
ingly.)

In April of 2015, Microsoft announced Service Fabric for their
Azure cloud offering. This new service lets you build microservices
using containers and is apparently the same technology that has
been powering their underlying cloud offerings for the past five
years. Mark Russinovich (Azure’s CTO) gave a helpful overview ses‐
sion of the new service at their annual //Build conference. He was
pretty clear that the underlying technology in the new service was
not Kubernetes—though Microsoft has contributed knowledge to
the project GitHub site on how to configure Kubernetes on Azure
VMs.

As far as I know, the only fully managed Kubernetes service on the
market among the large public cloud providers is Google Container
Engine (GKE). So if your goal is to use the things I’ve discussed in
this paper to build a web-scale service, then GKE is pretty much
your only fully managed offering. Additionally, since Kubernetes is
an open source project with full source code living on GitHub, you
can really dig into the mechanics of how GKE operates by studying
the code directly.

Fully Managed | 35

https://support.google.com/alerts/?hl=en
http://aws.amazon.com/ecs/
http://bit.ly/1bJA5Xc
http://bit.ly/1bJA5Xc
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/

A Word about Multi-Cloud Deployments
What if you could create a service that seamlessly spanned your bare
metal and several public cloud infrastructures? I think we can agree
that would be pretty handy. It certainly would make it hard for your
service to go offline under any circumstances short of a large meteor
strike or nuclear war.

Unfortunately, that’s still a little bit of a fairy tale in the clustering
world. People are thinking hard about the problem, and a few are
even taking some tentative steps to create the frameworks necessary
to achieve it.

One such effort is being led by my colleague Quinton Hoole, and it’s
called Kubernetes Cluster Federation, though it’s also cheekily some‐
times called Ubernetes. He keeps his current thinking and product
design docs on the main Kubernetes GitHub site here, and it’s a
pretty interesting read—though it’s still early days.

Getting Started with Some Examples
The main Kubernetes GitHub page keeps a running list of example
deployments you can try. Two of the more popular ones are the
WordPress and Guestbook examples.

The WordPress example will walk you through how to set up the
popular WordPress publishing platform with a MySQL backend
whose data will survive the loss of a container or a system reboot. It
assumes you are deploying on GKE, though you can pretty easily
adapt the example to run on bare/virtual metal.

The Guestbook example is a little more complicated. It takes you
step-by-step through configuring a simple guestbook web applica‐
tion (written in Go) that stores its data in a Redis backend. Although
this example has more moving parts, it does have the advantage of
being easily followed on a bare/virtual metal setup. It has no depen‐
dencies on GKE and serves as an easy introduction to replication.

Where to Go for More
There are a number of good places you can go on the Web to con‐
tinue your learning about Kubernetes.

36 | Here, There, and Everywhere

mailto:quinton@google.com
http://bit.ly/1HYPwbs
http://bit.ly/1HYPwbs
http://bit.ly/1erIAZ5
http://bit.ly/1erIAZ5
http://bit.ly/1d4w7cf
http://bit.ly/1tzCFQK

• The main Kubernetes homepage is here and has all the official
documentation.

• The project GitHub page is here and contains all the source
code plus a wealth of other configuration and design documen‐
tation.

• If you’ve decided that you want to use the GKE-managed offer‐
ing, then you’ll want to head over here.

• When I have thorny questions about a cluster I’m building, I
often head to Stack Overflow and grab all the Kubernetes dis‐
cussion here.

• You can also learn a lot by reading bug reports at the official
Kubernetes issues tracker.

• Finally, if you want to contribute to the Kubernetes project, you
will want to start here.

These are exciting days for cloud computing. Some of the key tech‐
nologies that we will all be using to build and deploy our future
applications and services are being created and tested right around
us. For those of us old enough to remember it, this feels a lot like the
early days of personal computing or perhaps those first few key
years of the World Wide Web. This is where the world is going, and
those of our peers that are patient enough to tolerate the inevitable
fits and starts will be in the best position to benefit.

Good luck, and thanks for reading.

Where to Go for More | 37

http://kubernetes.io/
http://bit.ly/1ubAK6h
http://bit.ly/1EYZrZ0
http://bit.ly/1G8uUZH
http://bit.ly/1RdwkHv
http://bit.ly/1Br65v2

About the Author
Dave Rensin, Director of Global Cloud Support and Services at
Google, also served as Senior Vice President of Products at Novitas
Group, and Principal Solutions Architect at Amazon Web Services.
As a technology entrepreneur, he co-founded and sold several busi‐
nesses, including one for more than $1 billion. Dave is the principal
inventor on 15 granted U.S. patents.

Acknowledgments
Everytime I finish a book I solemnly swear on a stack of bibles that
I’ll never do it again. Writing is hard.

I know. This isn’t Hemingway, but a blank page is a blank page, and
it will torture you equally whether you’re writing a poem, a polemic,
or a program.

Helping you through all your self-imposed (and mostly ridiculous)
angst is an editor—equal parts psychiatrist, tactician, and task mas‐
ter.

I’d like to thank Brian Anderson for both convincing me to do this
and for being a fine editor. He cajoled when he had to, reassured
when he needed to, and provided constant and solid advice on both
clarity and composition.

My employer—Google—encourages us to write and to generally
contribute knowledge to the world. I’ve worked at other places
where that was not true, and I really appreciate the difference that
makes.

In addition, I’d like to thank my colleagues Henry Robertson and
Daz Wilkins for providing valuable advice on this text as I was writ‐
ing it.

I’d very much like to hear your opinions about this work—good or
bad—so please feel free to contribute them liberally via O’Reilly or
to me directly at rensin@google.com.

Things are changing a lot in our industry and sometimes it’s hard to
know how to make the right decision. I hope this text helps—at least
a little.

mailto:rensin@google.com

	Copyright
	Table of Contents
	Chapter 1. In The Beginning…
	Introduction
	Who I Am
	Who I Think You Are
	The Problem

	Chapter 2. Go Big or Go Home!
	Introducing Kubernetes—Scaling through Scheduling
	Applications vs. Services
	The Master and Its Minions
	Pods
	Volumes
	EmptyDir
	Network File System (NFS)
	GCEPersistentDisk (PD)

	From Bricks to House

	Chapter 3. Organize, Grow, and Go
	Better Living through Labels, Annotations, and Selectors
	Labels
	Label Selectors
	Annotations

	Replication Controllers
	The Gestalt of a Replication Controller
	Scheduling != Scaling
	The Best Time to Use a Replication Controller Is…

	Services
	The Life of a Client Request
	A Few of the Finer Points about Integration with Legacy Stuff
	Exposing Your Services to the World

	Health Checking
	Low-Level Process Checking
	Automatic Application Level Checking
	Manual Application Level Checking

	Moving On

	Chapter 4. Here, There, and Everywhere
	Starting Small with Your Local Machine
	Linux
	Windows/Mac

	Bare Metal
	Virtual Metal (IaaS on a Public Cloud)
	Other Configurations
	Fully Managed
	A Word about Multi-Cloud Deployments
	Getting Started with Some Examples
	Where to Go for More
	

