

Grant Shipley and Graham Dumpleton

OpenShift for Developers
A Guide for Impatient Beginners

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-94300-7

[LSI]

OpenShift for Developers
by Grant Shipley and Graham Dumpleton

Copyright © 2016 Red Hat, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Brian MacDonald and Heather Scherer
Production Editor: Melanie Yarbrough
Copyeditor: Christina Edwards

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

June 2016: First Edition

Revision History for the First Edition
2016-05-18: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. OpenShift for Developers, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Foreword. vii

Introduction. ix

1. Introduction to a Container Application Platform. 1
Docker 2
Kubernetes to the Rescue? 3
OpenShift 3

Web-Based Console 4
Command-Line Tool 5
Source-to-Image 5
Integrated Logging and Metrics 5

Summary 6

2. Concepts You Need to Understand. 7
Interacting with OpenShift 7
The Deployed Application 9
Build and Deployment Process 10
Online Cheat Sheet 11
Summary 11

3. Installing the All-in-One VM. 13
Software Requirements 14

Install VirtualBox 14
Install Vagrant 14
Vagrant init 15
Change Your Memory Configuration 15
Start Things Up 15

iii

Download the Latest oc Command-Line Tool 15
Initial Login from the Web Console 16
Now Log In from the Command Line 18
Now Log In to the Web Console as a Normal User 18
Create a GitHub Account 19
Summary 20

4. Developing and Deploying Your First Application. 21
Understanding the Tools 21

Git 21
WildFly 22

Creating Our First Application 23
Creating a Copy of the Sample Application 23
Creating the Application 24

Making a Code Change and Starting a New Build 27
Summary 28

5. Adding Dependencies and a Database. 29
Creating the Base Application 29

Forking the Repository and Deploying the Application 29
Adding the Database to the Application 38

Adding a REST Endpoint 39
Summary 41

6. Deploying and Scaling Your Application. 43
Automatic Deployments Using Webhooks 43

Adding Our Webhook URI to GitHub 43
Visibility of Your OpenShift Instance 46

Scaling Your Application 46
Scaling from the Web Console 47
Applications Suitable for Scaling 48
Automatic Scaling of an Application 48

Deployment Strategies 48
Rolling Strategy 48
Recreate Strategy 49
Changing the Strategy 49
Implementing Custom Strategies 50

Application Health Checks 50
Deployment Lifecycle Hooks 52
Application Rollback 54
Summary 55

iv | Table of Contents

7. Using Application Templates. 57
What Is an Application Template? 57
Benefits of Using Templates 58
Using Our First Application Template 58
Creating Your Own Templates 60
Summary 61

8. Working with Your Application. 63
Listing Running Instances 63
Container Logs 64

Build Logs 64
Application Logs 65
Application Startup Failures 65

Environment Variables 66
Editing Configurations 67
Debugging an Application 68
Deleting an Application 70
Summary 71

9. Deploying an Existing Docker Image. 73
What Is Docker Hub? 73

The Dockerfile 73
The Docker Build 75
Sharing the Docker Image 75

Running a Docker Hub Image on OpenShift 75
Routes 76
Summary 79

Afterword. 81

Table of Contents | v

Foreword

Our industry is changing. It no longer matters what type of company you work for. It
no longer matters what industry you are in. Software is becoming the tool on which
the futures of our companies are built, both small and large.

At the center of this change is the evolution of software development itself. Open
source development models have taken over. Agile practices are needed as the pace at
which one needs to respond to competition or changes in the market is relentless.
Linux containers have exploded onto the market as the new basis on which to build
connections between development and operations. And harnessing infrastructure for
your application, from public cloud to private infrastructure, is a necessity.

For some, it can feel like the pace of change is so fast that it’s better to not change at
all. Having been lucky enough to participate in many of the aforementioned changes,
I can assure you this is not a good position. Those who find the way to harness these
changes are disrupting entire industries. It will soon be a necessity, not an option to
chart your course.

When we set out to build OpenShift, this was our goal. We wanted a way for software
developers to take their new idea and make it a reality. We wanted to bring them the
latest technology to use to their advantage in a simple way so their energy could be
focused on their idea. To be this guide for developers, we have also had to constantly
evolve in support of this mission.

Grant Shipley has been at the center of our evolution. He has been our link to the
developers and our guide in keeping our focus on our end users. His passion for open
source and his passion for development come through in everything he does. I’ve
watched as Grant has grown from a innovative software developer to an amazing
speaker and champion of our product and mission. He’s done an inspiring job of cap‐
turing that spirit in this book and I truly thank him for continuing to drive us in our
mission.

vii

Graham Dumpleton has come to us from the Python developer community where he
has been a key contributor in the area of Python web application deployment. He was
the author of the Apache module called mod_wsgi, a popular choice among Python
developers for deploying their web applications. Graham is using all that experience
to help drive forward improvements in our support for Python in OpenShift as well
as our build systems based around Source-to-Image (S2I).

They both bring a wealth of experience to this book and I hope it helps propel you to
that next great idea.

— Matt Hicks
VP, Engineering at Red Hat

viii | Foreword

Introduction

OpenShift has been available since 2011 and has seen great success as a polyglot plat‐
form for the deployment of web applications and services. Part of the success of
OpenShift derives from the use of containers in conjunction with a Security-
Enhanced Linux (SELinux) environment. These technologies enable OpenShift to
implement a secure multi tenant environment suitable for the enterprise, as well as
OpenShift Online, Red Hat’s own public platform as a service (PaaS) offering.

Technology is always evolving, and to keep up with the latest advances OpenShift has
also evolved. The latest version of OpenShift takes advantage of newer technologies
such as Docker and Kubernetes, for managing and running applications within con‐
tainers. Building on Kubernetes and OpenShift’s own magic sauce, OpenShift takes
PaaS to a new level, what we like to call a container application platform.

OpenShift offers you the ability to easily deploy your web application code directly
using a library of pre-defined image builders, or you can bring your own Docker
images. With support in OpenShift for features such as persistent volumes, you are
not limited to just running 12-factor or cloud native applications. You can also deploy
databases and many legacy applications which you otherwise would not be able to
run on a traditional PaaS.

OpenShift is the modern take on PaaS that you can use with your current applica‐
tions, but which also provides the power and flexibility to meet future needs. This
book will bring you up to speed on how OpenShift has changed to meet the new
requirements for building, deploying and hosting your applications.

Who Should Read This Book
If you are impatient, this book is for you. It is intended for programmers who want to
get started using OpenShift as quickly as possible, but also want to understand a little
bit of what they are doing.

ix

We will step you through how to build and deploy your first application, and also
introduce you to the main concepts of OpenShift and the tools available for working
with OpenShift.

As the title indicates, we are assuming little in the way of background knowledge
except:

• You have some basic programming experience.
• You know how to create a web application.
• You know how to use the command line.
• You can use a text editor on a console.

We also assume you are familar with basic Linux or Windows shell commands, and
how to install additional software to your computer.

The software you install will provide you with a complete working OpenShift envi‐
ronment that you can use locally for development or testing.

We have used Java and the WildFly application server for the examples in this book.
You do not need to be proficient in Java. If you are familar with any of the popular
programming languages you will do just fine.

Why We Wrote This Book
We want to enable you to become self-sufficient in the basic use of OpenShift for cre‐
ating and hosting your web applications, in as few words as possible. Therefore, we
will not go into long explanations of the technologies used in OpenShift or different
programming paradigms, but instead will give you links where you can go to read
more.

Navigating This Book
The aim of this book is to get you up and running on OpenShift as quickly as possi‐
ble. To that end, we dive into the most crucial content first and fill in the finer details
as we go along.

• Chapters 1 and 2 provide a basic introduction to a container application plat‐
form, as well as the basic terms and technologies you will need to understand for
the rest of the book.

• Chapter 3 provides instructions on how you can install a self contained version
of the OpenShift environment on your own computer.

• Chapter 4 steps you through deploying your first application to OpenShift.

x | Introduction

• Chapter 5 adds in a database to the application, providing it with a way of man‐
aging application data.

• Chapter 6 delves into managing deployments of your application and how to
scale it up to handle more users.

• Chapter 7 introduces application templates, a means of simplifying new applica‐
tion deployments.

• Chapter 8 covers basic management commands for working with and under‐
standing what your application is doing.

• Chapter 9 discusses deploying your own Docker images to OpenShift.

Online Resources
In this book you will install a self contained OpenShift environment based on Open‐
Shift Origin. This is the upstream Open Source version of OpenShift that Red Hat’s
OpenShift Enterprise, OpenShift Dedicated and OpenShift Online products are based
on. The all-in-one virtual machine used is available from the OpenShift Origin site.

OpenShift Origin will always include all the latest features, with support being pro‐
vided by the OpenShift community.

The OpenShift product releases are created as a regular snapshot of the OpenShift
Origin project. The product releases do not always have the very latest features, but if
you have a commercial Red Hat subscription, the product releases include support
from Red Hat.

If you would like to try out the OpenShift Enterprise version, a couple of options are
available.

The first is to sign up to the Red Hat developers program at Red Hat Developers page.

This is a free program and allows you to access versions of Red Hat products for per‐
sonal use on your own computer. One of the products made available through the
program is the Red Hat Container Development Kit.

This includes a version of OpenShift that you can install on your own computer, but
which is based on OpenShift Enterprise rather than OpenShift Origin.

A second way of trying out OpenShift Enterprise is via the Amazon Web Services
(AWS) Test Drive program.

This will set you up an OpenShift environment running across a multi node cluster
on AWS.

Take a look at more in-depth documentation on OpenShift and how to use it at the
OpenShift documentation site.

Introduction | xi

https://www.openshift.org
https://www.openshift.org
https://www.openshift.com/enterprise/
https://www.openshift.com/dedicated/
https://www.openshift.com
https://www.openshift.org/vm/
http://developers.redhat.com
http://developers.redhat.com/products/cdk/overview/
https://aws.amazon.com/testdrive/redhat/
https://aws.amazon.com/testdrive/redhat/
https://docs.openshift.org

Check out the OpenShift blog, where regular articles are published on OpenShift.

Want to hear about how others in the OpenShift community are using OpenShift, or
wish to share your own experiences, you can join the OpenShift Commons.

If you have questions or issues, you can reach the OpenShift team through Stack
Overflow, via email to openshift@redhat.com, on Twitter (@openshift), or in the
#openshift channel on IRC’s FreeNode network.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/gshipley/book-insultapp.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not

xii | Introduction

https://blog.openshift.com
http://commons.openshift.org
http://stackoverflow.com
http://stackoverflow.com
mailto:openshift@redhat.com
https://github.com/gshipley/book-insultapp

need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “OpenShift for Developers by Grant
Shipley and Graham Dumpleton (O’Reilly). Copyright 2016 Rad Hat, Inc.,
978-1-491-94300-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable
database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
Course Technology, and dozens more. For more information about Safari Books
Online, please visit us online.

Introduction | xiii

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Grant
Writing a book of any length takes a considerable amount of time. This is time that is
most often stolen from my family. For that reason, I would like to thank my wonder‐
ful wife Leah and our four children—Jackson, Emily, Gavin, and Mason. Without
their support and understanding, I would not have been able to create this book. I
love you all very much.

I would also like to thank the entire OpenShift team at Red Hat, but especially the
individuals who work directly on my team: Diane, Graham, Steve, Ryan, Jorge, and
Marek. Working with such a fine group of folks makes this job not seem like a job at
all and more about fun and pushing new technologies to the limit.

Other people I would like to thank, in no particular order, are as follows: Ashesh,
Matt, Joe, Mike, Jake, Shawn, Sathish, Sam, Corey, Clayton, Dan, Thomas, Keck, Burr,
Jakub, Miciah, and everyone else who has made OpenShift such a success. Lastly, I
would like to thank Alexa Overbay for her dedication to the project and all of the
hard work she puts in to help myself and the OpenShift team stay organized and run‐
ning smoothly.

xiv | Introduction

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Graham
I would like to thank Grant and Red Hat for giving me the opportunity to work at a
company which values and contributes to Open Source projects. I am a strong
believer in Open Source and the good that it can create in the wider community.
Through my own projects I have been attempting to improve the options available to
Python developers for hosting web applications. I see the OpenShift project as being a
very important part of that story and am thankful for the opportunity to work on it.
With a family, my wife Wendy and two young children Kara and Caiden, the flexibil‐
ity of being able to work remotely from home in my role with Red Hat has helped
immensely in managing the day to day demands of children working their way
through school. It does mean I often work strange hours and occasionally need to
travel, but I have a family which is more than tolerant and is supportive of me, for
which I am very grateful.

Introduction | xv

CHAPTER 1

Introduction to a Container
Application Platform

In the few years since the original version of OpenShift was released, the cloud eco‐
system has expanded at a rapid pace. New technologies and systems are springing up
almost overnight. The new version of OpenShift (version 3) includes other technolo‐
gies at the core of the platform, and it’s worth it to spend some time learning about
them and how to incorporate them into your development work. The core technol‐
ogy used as the basis of OpenShift includes Docker-based containers and orchestra‐
tion via the Kubernetes system. Given that the core of the platform is based on
containers, we often refer to OpenShift as a container application platform in that it is
a platform designed for the development and deployment of containers.

1

So why did the OpenShift team rewrite their perfectly good PaaS
(OpenShift 2)? The core architecture of OpenShift was built a bit
over 4 years ago, which in the cloud evolution years (like dog years)
is about 28 years ago, and a lot has changed since then. One exam‐
ple is Docker, which we discuss later in this chapter. The begin‐
nings of the Docker project that you know today started as a
container implementation using cgroups and kernel namespaces at
a PaaS company named dotCloud. In March of 2013, the Docker
project was released as an open source project and in July 2013, the
company behind dotCloud pivoted and announced that their pri‐
mary focus going forward would be the Docker container technol‐
ogy. OpenShift has been using containers since the beginning but
the OpenShift team saw great potential within the Docker ecosys‐
tem—i.e., its potential as a “standard” for packaging applications,
thereby creating better portability across environments.
The landscape in the cloud area has also been changing rapidly.
The OpenShift team has four years of experience running one of
the largest public PaaS systems and a large and successful install
base of the on-premise enterprise version. The OpenShift team
realized the time was right to use our knowledge, industry
advancements, and new FOSS cloud projects to create an even bet‐
ter platform, which has been released as the OpenShift 3 container
application platform.

Docker
Unless you have been living under a rock last two years, you have certainly heard
about Docker and probably even heard about how Docker-based containers can solve
all of your problems. While it is true that Docker-based containers are certainly cool,
we need to be realistic about what this great technology provides and what it doesn’t.
In its simplest form, Docker provides users with a lightweight portable format that
can be used to ship images of an application around to different environments. It
accomplishes this while also packaging up all of the dependencies at both the system
and application level to ensure the application runs as expected when deployed.

While Docker provides a great portable container format to ship applications around,
it is important to remember that using Docker-based containers is just a small piece
in the overall deployment puzzle that many organizations and individual developers
face. A single Docker container that contains your application code is pretty trivial to
get started with but once you move past the single container phase for your applica‐
tion, things become complex quickly, often leaving the developer to understand
operational tasks instead of focusing on code. You may be thinking, “What on earth is
he talking about?” For starters, things like:

2 | Chapter 1: Introduction to a Container Application Platform

• Load balancing a set of containers with or without session affinity
• Mounting persistent storage inside of the containers
• Placement and scheduling of containers on the infrastructure
• Rolling deployments and other operational considerations that traditional devel‐

opers are not experts on

As you can see, things get complicated quickly when moving from a single develop‐
ment container to a real production application.

Given that Docker-based containers are such an important piece of the puzzle in a
container application platform, Red Hat and the OpenShift team have spent a tre‐
mendous amount of engineering effort working on and with the Docker upstream
project. In fact, at the time of writing, Red Hat is the second largest contributor to the
project.

Kubernetes to the Rescue?
While Docker gets us a portable lightweight runtime, it lacks features for supporting
n-tier applications. The OpenShift team understood this early on in the research
phase when planning the new platform. We searched high and low for a great orches‐
tration and scheduling system and made an early bet on the Kubernetes project Goo‐
gle started, and are now seeing great benefits as a result of that decision. Let’s talk a
little bit more about the Kubernetes project as you may not be familiar with it.

Kubernetes is a free and open source project started by Google in 2014. The first ver‐
sion was released in July 2015. The project is based off the Borg project, the technol‐
ogy Google uses to run containers at scale internally, launching over 7000 containers
per second. When it came time to build their next version of the software they deci‐
ded to open source the effort and Kubernetes was born.

Red Hat and the OpenShift team were key contributors to Kubernetes because of the
value we see in the project to help with the scheduling, orchestration, and running of
Docker-based containers for production workloads.

Again, just to be clear, both Docker and Kubernetes are great. However, they are just
two pieces of the container application platform puzzle.

OpenShift
After all this goodness with Docker and Kubernetes, you are probably wondering
where OpenShift fits in to the overall puzzle and what piece the platform provides. It
turns out that Kubernetes is excellent at orchestrating and scheduling containers, but
to have a platform that helps developers and sys admins deal with the piece most

Kubernetes to the Rescue? | 3

important to their “customers”—the application—something more is needed. The
goal of OpenShift is to provide the best experience for developers and sysadmins
developing, deploying, and running applications. In other words, OpenShift is a layer
on top of Docker and Kubernetes that makes it accessible and easy for the developer
to create applications and a platform that is a dream for operators to deploy contain‐
ers on for both development and production workloads.

We are going to quickly cover some of the features OpenShift brings to the table to
help developers (since that is the focus of this book) and then we will explore these
more in depth throughout the book.

Web-Based Console
The OpenShift platform ships with a feature-rich web console that allows developers
to perform the actions needed to deploy and run existing source code projects. For
example, one of the features (as shown in Figure 1-1), is a graphical representation of
an application that consists of multiple containers all load balanced, while also using a
database as the backend storage engine.

Figure 1-1. OpenShift resource visualization

Other tasks a developer would normally perform via the web console is scaling the
application containers, creating projects, viewing log files, viewing the memory and
CPU utilization of a container, and other common functions. The web console is a
great tool as it provides a single interface for all aspects of your development project.

4 | Chapter 1: Introduction to a Container Application Platform

Command-Line Tool
OpenShift also provides a command-line tool that is written in the Go programming
language. This tool, called oc, is a single binary executable provided for all major
operating systems including Microsoft Windows, Apple OS X, and Linux. If you
enjoy working on the command line, the oc tool is a first-class citizen and can be used
to perform any operation that can be accomplished via the web console. The greatest
benefit of using the oc command-line tool is that you have a single executable to per‐
form all operations instead of having to interface directly with multiple tools such as
the ones provides with Docker and Kubernetes. You can think of it as “one tool to
rule them all.” Okay, that may be a bad LOTR reference, I know.

Source-to-Image
The true power of OpenShift comes in with the S2I (Source-to-Image) open source
project that the OpenShift Team created as part of the OpenShift platform. The team
knows that developers want to take advantage of all of the benefits that running appli‐
cations in containers provides, but don’t want to spend their day creating Dockerfiles
or running Docker builds while also having to do all of the orchestration by hand.

In its simplest form, the S2I-based Docker images allow developers to interact with
the platform from a pure source code perspective. What this means is that OpenShift
only needs to know the URL of your git repository and then the platform takes care
of the rest. Under the covers, when you create a new project and container, the plat‐
form matches a base image of the desired runtime up with your source, performs a
build, and then creates a new Docker image on the fly.

For a more concrete example, let’s assume we have a Java-based project that uses the
Maven build system. When using the WildFly application server and a git repository
that contains your code, the platform will download the base WildFly image, clone
your repo, identify it as a Maven project, run a Maven build, and take the artifact of
that build and create a new Docker image that contains both the WildFly runtime and
your build artifact. Finally, it will deploy the build artifact and then start up the
resulting container. I know this may sound complicated, but don’t worry, the platform
takes care of all of the heavy lifting. We will dive into more detail as we progress
through the book.

Integrated Logging and Metrics
One of the most important aspects of any software development project is the ability
to troubleshoot issues as they arise. Since the beginning of time, one of the first places
a developer looks when beginning the debug process is the application logs for the
project. OpenShift provides a comprehensive view of your application logs including
runtime logs, build logs, and deployment logs. Having these at your fingertips

OpenShift | 5

through the web console and oc tool greatly simplifies the troubleshooting process
when using containers.

Another important aspect is metrics about your applications, utilization of system
resources. The OpenShift platform includes support for this as shown in Figure 1-2,
which details the memory and CPU utilization for a container running a Java applica‐
tion server and accompanying application.

Figure 1-2. OpenShift metrics viewer

Summary
In this chapter we learned about the OpenShift container application platform and
the benefits it adds for developers on top of plain old Docker and Kubernetes. There
are certainly more advantages to using a full platform than what we have briefly dis‐
cussed in this chapter. Never fear, as we progress through the contents of this book,
we explore more topics in detail to ensure you are successful as a developer using
OpenShift.

6 | Chapter 1: Introduction to a Container Application Platform

CHAPTER 2

Concepts You Need to Understand

Now that you understand the bigger picture of where we are going with Docker con‐
tainers, Kubernetes, and OpenShift, we need to introduce you to some of the key ter‐
minology we will use throughout the book.

We cover the basic concepts of Kubernetes and discuss how OpenShift builds on
them. In general, you can view Kubernetes as being aimed at Ops teams, providing
them with a tool for running containers at scale in production. OpenShift adds to this
by also supporting the work of a Dev team and others by making the job of the Ops
team easier, which helps to bridge the gap between Dev and Ops and thus enable the
latest DevOps philosophy.

Interacting with OpenShift
The primary grouping concept in Kubernetes is the namespace. Namespaces, as the
term suggests, provide a scope for names. More specifically, namespaces provide the
scope named resources that describe your application and how it should be deployed.
Namespaces are also a way to divide cluster resources between multiple uses. That
being said, there is no security between namespaces in Kubernetes; if you are a “user”
in a Kubernetes cluster, you can see all the different namespaces and the resources
defined in them.

7

Figure 2-1. OpenShift access and control

The first new concept OpenShift adds is project, which effectively wraps a namespace,
with access to the namespace being controlled via the project. Access is controlled
through an authentication and authorization model based on users and groups.
Projects in OpenShift therefore provide the walls between namespaces, ensuring that
users, or applications, can only see and access what they are allowed to.

This enables multitenant use of an OpenShift cluster with access privileges deter‐
mined by the identity of the user or the team they belong to. Users can be assigned to
multiple groups and can inherit permissions depending on group membership.
Groups often map to teams or functional units within a company, such as developers,
QA, or production.

OpenShift provides a number of different ways to interact with an OpenShift cluster.
The OpenShift command-line tool oc is the primary way most users interact with
OpenShift. The command-line tool talks via a REST API exposed by the OpenShift
cluster. We cover installation of the command-line tool in the next chapter.

If you want to avoid using the command line tool, or you want to automate your
interactions with the OpenShift cluster, you can always use the REST API directly.
Diving into the API is beyond the scope of this book, but we wanted to make sure
you know there is an API, since it can be useful when integrating with an existing
external system for continuous integration and deployment (CI/CD). You can find
documentation on the REST API at OpenShift’s documentation page.

Finally, OpenShift includes a web console. This provides a web-based GUI for those
who would prefer not to use command-line tools. For some tasks, such as the initial
deployment of an application, the web console presents a more user-friendly forms-

8 | Chapter 2: Concepts You Need to Understand

http://red.ht/1WKU0J6

driven interface based on application templates, which can help you get going
quicker. We will be using both the command line and the web console throughout the
book.

If you are familiar with Kubernetes you may also know of the command-line tool
kubectl. In OpenShift this would normally only be used in the setup and internal
management of the cluster. Since it is more of an administration tool in the context of
OpenShift we will not be discussing it here.

The Deployed Application
You may be wondering: “Is a namespace the same thing as an application?” OpenShift
has no formal concept of an application, thereby allowing an application to be flexible
depending on a user’s needs.

You can dedicate one to everything related to just one application. Or, so long as you
label all the resources making up an application so you know what goes with what,
you can also use the namespace to hold more than one.

What are the different parts that go into making up an application? That is what we
will cover now.

Figure 2-2. OpenShift project (Namespace)

The most basic unit in OpenShift are pods. A pod is one or more containers guaran‐
teed to be running on the same host. The containers within a pod share a unique IP
address. They can communicate with each other via the “localhost” and also all share

The Deployed Application | 9

any volumes (persistent storage). The containers themselves are started from an
image, which in our case is a Docker image.

When scaled up, an application will have more than one copy of itself, and each copy
will have its own local state. Each copy corresponds to a different instance of a pod
with the pods being managed by the replication controller. As each pod has a unique
IP, we need an easy way to address the set of all pods as a whole. This is where a
service comes into play. The service gets its own IP and a DNS name. When making a
connection to a service, OpenShift will automatically route the connection to one of
the pods associated with that service.

Although a service has a DNS name, it is still only accessible within the OpenShift
cluster and is not accessible externally. To make a service externally accessible, a route
needs to be created. Creating a route automatically sets up haproxy or a hardware-
based router, with an externally addressable DNS name, exposing the service and
load-balancing inbound traffic across the pods.

Build and Deployment Process
Getting your application running and managed for you is all well and good, but we
need a way of getting the application built and deployed in the first place.

The build configuration contains a description of how to build source code and a base
image into a new image—the primary method for delivering changes to your applica‐
tion. Builds can be source based and use S2I builder images for common languages
like Java, PHP, Ruby, or Python, or be Docker based and create builds from a Docker‐
file. Each build configuration has webhooks that can be triggered automatically by
changes to their base images or source code.

The output of the build process is an image, which is stored in an integrated Docker
registry ready for distribution out to nodes when the application is deployed. The
image stream is how the image and its versions are tracked by OpenShift. If you
already have an existing Docker image on an external registry such as Docker Hub, it
can also be referenced by an image stream instead of building it locally.

When deploying an application, the deployment configuration is what defines the
template for a pod and manages deploying new images or configuration changes
whenever those change. A single deployment configuration is usually analogous to a
single microservice. A deployment configuration supports a number of different
deployment strategies including a complete shutdown then restart, rolling updates, or
your own fully customized behaviors. Different strategies support pre, mid, and post
hooks, allowing you to perform specific actions at key points of a deployment. The
result of a deployment is the replication controller, which then manages your pods
and keeps them running.

10 | Chapter 2: Concepts You Need to Understand

As you can see, various parts go together to define your application and the build
process to create it. But OpenShift manages the creation of all of the parts when using
the web console or the command-line tools. If you do need to implement a more cus‐
tomized configuration, you can still jump in and change the configuration and create
your own templates to automate future builds and configurations using your custom‐
izations.

Online Cheat Sheet
When you move beyond the book and start using OpenShift in your day-to-day
activities (development and operations), use the handy online cheat sheet available by
running the oc types command. It gives you a quick summary of the different con‐
ceptual types and definitions used in OpenShift like those we covered here:

$ oc types
Concepts and Types

Kubernetes and OpenShift help developers and operators build, test, and deploy
applications in a containerized cloud environment. Applications may be composed
of all of the components below, although most developers will be concerned with
Services, Deployments, and Builds for delivering changes.

Concepts:

* Containers:
 A definition of how to run one or more processes inside of a portable Linux
 environment. Containers are started from an Image and are usually isolated
 from other containers on the same machine.

...

Also make use of the oc help command and the --help option to see descriptions
and examples and learn how to use the command in question.

Summary
In this chapter, we covered key terminology you need to understand, and we
explained which of those concepts originate in Kubernetes versus OpenShift. In the
next chapter, we will describe how you can install the OpenShift software on your
system.

Online Cheat Sheet | 11

CHAPTER 3

Installing the All-in-One VM

For the exercises in this book we will be using a virtual machine (VM) that has all the
pieces of an OpenShift server already installed and configured. This machine will be
routable from your local system so you can treat it like a hosted version of OpenShift
and can view the URLs you create.

This image is based off of OpenShift Origin and is a fully functioning OpenShift
instance with an integrated Docker registry. The aim of this project is to allow web
developers and other interested parties to run OpenShift V3 on their own computer.
The VM is configured by default to have a separate IP address (10.2.2.2) from your
local machine, and it includes a network configuration that assigns each new con‐
tainer deployed on the platform its own unique IP address. This gives the illusion that
the VM is running on separate hardware in a data center or public cloud while in fact
it’s running locally on your machine.

The OpenShift master, node, Docker registry, and other pieces run on one VM. Given
its focus on application developers, it should NOT be used in production. While the
Vagrantfile only specifies 2 gigs of RAM, you can edit the file to increase this setting if
you want to run more containers concurrently in your instance.

The VM uses xip.io to provide DNS resolution with application URLs. The advantage
of this is that you actually get routable URLs to your local machine without browser
or Vagrant plug-ins that may not work on your machine. The drawback is that you
need to be online whenever you use the VM and xip.io may be blocked by your com‐
pany’s firewalls. We apologize in advance if this happens. Our only suggestion is to
either try to work on a different network, talk to your admin about opening up xip.io,
or try the Landrush plug-in for Vagrant.

13

https://github.com/openshift/origin
https://xip.io
https://github.com/phinze/landrush

Since we wanted developers to be able to use any Docker image
they want, we had to turn off some security in OpenShift. By
default, OpenShift will not allow a container to run as root or even
a nonrandom container assigned userid. Most Docker images in
the Dockerhub do not follow this best practice and instead run as
root. Furthermore, a large majority of Dockerhub images are not
patched for well-known vulnerabilities. Therefore, use images from
Docker Hub with caution. We think some of the risk is mitigated
because you are running OpenShift in a VM, but still—be careful
about which Docker images you run.

While we will go through the install instructions here, the latest install instructions
and information can be found on the OpenShift.org VM page.

Software Requirements
You only need a couple of things on your system to run the all-in-one image: Vagrant,
VirtualBox, and the oc command-line tool.

Install VirtualBox
The OpenShift all-in-one image uses the VirtualBox as the virtualization system. You
are probably wondering why we chose VirtualBox instead of other tools. We chose it
for the following reasons:

• It is cross-platform, allowing Mac, Windows, and Linux users use it.
• It is free and open source, allowing everyone freedom as in beer and as in speech

when choosing the virtualization tool.

Download the correct package for your operating system from the VirtualBox down‐
load page.

Once you have it downloaded, follow the instructions on the VirtualBox site to install
the software.

Install Vagrant
Vagrant is a software tool that allows users to create and configure lightweight, repro‐
ducible, and portable development environments. It works in conjunction with virtu‐
alization (both VMs and IaaS) to automate all the steps necessary to get your dev
environment going. You probably already have Vagrant installed on your system, but
if you don’t simply head over to the download page and follow the instructions for
your operating system.

14 | Chapter 3: Installing the All-in-One VM

https://openshift.org/vm
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html

For Linux systems, is it recommended that you install via the pack‐
age manager provided by your distribution. For example, to install
Vagrant on Fedora 23, issue the following command:

$ sudo dnf install vagrant

Vagrant init
The last thing we need to download is the Vagrantfile, which tells Vagrant what type
of system we want to download as well as some configuration information.

Change Your Memory Configuration
The last thing you may want to do is customize the amount of memory that you want
the OpenShift container application platform to use. By default, the Vagrantfile will
allocate 4 GB of memory for the platform, but you may want to change this depend‐
ing on your specific needs. For example, my development rig has 32 GB of memory
(yeah, I am bragging a bit here) so I like to allocate 16 GB. The relevant line you want
to change in the Vagrantfile is:

vb.memory = "4096"

Start Things Up
The last thing we need to do is start up the platform. To do this, ensure you are in the
directory where your Vagrantfile is located and issue the following command:

$ vagrant up --provider=virtualbox

BAM!

At this point, the all-in-one image will be downloaded so be patient as it depends on
your Internet connection.

Download the Latest oc Command-Line Tool
OpenShift 3 allows you to work from the command line, web console, or via the
Eclipse IDE using the latest JBoss tools. However, we are going to focus on using the
command-line tool and the web console here. The oc tool is a single executable that is
written in the Go programming language. For this reason, there is actually nothing to
install. You simply need to download the tool and add it to your PATH. Sounds easy,
right? Well, it is for OS X and Linux users, but Windows users will need to hunt
around a bit to change the system path. Let’s start with downloading the toolset. The
only real requirement for the oc tool is that you are using a 64-bit operating system.
The VM instruction page has links to the appropriate version of the oc command-
line tool based on the version of the VM you are using.

Software Requirements | 15

https://www.openshift.org/vm/Vagrantfile
https://openshift.org/vm

Once you have the tool downloaded, extract the contents and add the oc executable
to your PATH. For example, if I extracted the contents to the cli directory in my
home directory, I would issue the following command in both Linux and OS X:

$ export PATH=$PATH:~/cli/

Windows

Changing your PATH in Windows varies by OS version but the
general workflow is to right-click your computer name inside of
File Explorer, and select Advanced system settings (I guess chang‐
ing your PATH is considered an advanced task?)

Click the Advanced tab and then click Environment variables. Once the new dialog
opens, select the Path variable and add “;C:\CLI” at the end (ensure you replace C:
\CLI with the location of where you extracted the tool). You could also just copy it to
C:\Windows or a directory you know is already on your path. For more detailed
instructions, by operating system:

• Windows XP
• Windows Vista
• Windows 7
• Windows 8
• Windows 10: Follow the directions above.

Initial Login from the Web Console
Now that we have everything in place let’s go ahead and log in as the admin on the
box so we can do one last preparatory step. The VM has no set users and passwords
so you can create your usernames and passwords as you go along:

1. Go to the web console for your OpenShift instance: https://10.2.2.2:8443.
2. At the login prompt type admin for the user and password for the password, as

shown in Figure 3-1.

16 | Chapter 3: Installing the All-in-One VM

https://support.microsoft.com/en-us/kb/310519
http://bit.ly/1ZhXZvQ
http://bit.ly/1ZhXSjM
http://bit.ly/1ZhXUZ6
https://10.2.2.2:8443

Figure 3-1. Use admin for the username and password for the password when
prompted

3. You should see a screen listing all the projects available to the admin user. We will
discuss some of these projects later in the book, but for now, click the openshift-
infra project, as shown in Figure 3-2.

Figure 3-2. Select the openshift-infra project

4. Inside this project you will see a service and a route:

Initial Login from the Web Console | 17

hawkular-metrics.apps.10.2.2.2.xip.io
Go ahead and click that link. If you get a browser warning go ahead and accept
the certificate.

5. Now we can go ahead and log out as admin and log in as a user without the clut‐
tered project view (see Figure 3-3).

Figure 3-3. Log out of the admin account

Now Log In from the Command Line
Let’s go ahead and log in as a normal user using the command-line tools:

$ oc login https://10.2.2.2:8443

Authentication required for https://10.2.2.2:8443 (openshift)
Username: user
Password: password
Login successful.

You don't have any projects. You can try to create a new project, by running

 $ oc new-project <projectname>

As noted earlier, you can create any username and password; we use user:password in
our examples. For now, do not create a new project; we will do this in the next chap‐
ter.

In Windows, the command-line tool will not let you log in due to
the self-signed certificate for the server. You need to log in passing
a flag to tell the command-line tools to ignore the self-signed cert:

 oc login https://10.2.2.2:8443
 --insecure-skip-tls-verify=true

Now Log In to the Web Console as a Normal User
Now let’s bring the experience full circle by logging in as the same user in the web
console. You already logged in on the web console a couple of steps above, so just do

18 | Chapter 3: Installing the All-in-One VM

https://hawkular-metrics.apps.10.2.2.2.xip.io

the same thing except use the normal username and password we used previously.
You should see a screen like this the one in Figure 3-4.

Figure 3-4. OpenShift welcome screen

Again, we’re not going to create a project right now. On to our final step.

Create a GitHub Account
Finally, to make things easier here in terms of code and exchanging ideas, you need to
sign up for a GitHub account. You will use this to fork code and to make it easier to
builds in OpenShift. If you don’t already have an account go ahead and create one
(see Figure 3-5).

Figure 3-5. Create an account if you don’t have one

Create a GitHub Account | 19

https://github.com

GitHub supports using two-factor authentication (TFA) for your account and we
strongly recommend you use it. TFA means that in addition to your normal pass‐
word, a second factor is required to log in (usually a random code generated every
minute or so on your phone). We have had two different online accounts saved from
being hacked by using TFA. To turn on TFA, go to your settings (the icon at the top-
right of your GitHub page, go to Security, and then turn on two-factor authentication,
as shown in Figure 3-6.

Figure 3-6. Turn on two-factor authentication

The system will walk you through a few steps to enable it. While it may seem like a bit
of a hassle, you will thank us someday (or not because you never notice not being
hacked).

Summary
In this chapter, we set up your local machine so you have a working instance of
OpenShift running and ready to interact with. You also got a chance to log in, do
some easy configuration, and finally set up a GitHub account for your code. At this
point you are probably thinking, “When do I actually get to work on code?!?” Well,
the time has come—from now it is all hands-on development work with OpenShift.

20 | Chapter 3: Installing the All-in-One VM

CHAPTER 4

Developing and Deploying
Your First Application

At this point, you should have a good understanding of the OpenShift platform and
have it running locally. Now comes the good stuff, actually using the platform for
application development and deployment. In this chapter, we are going to create and
deploy our first application using the popular open source WildFly application server
for Java-based applications. We will also use a bit of git, since it is the main way
OpenShift interacts with source code. But before we get started, we need to cover a
few basics of both Git and WildFly in case you are not familiar with them.

Understanding the Tools
Git
Git is a program that provides distributed version control. You may have used Sub‐
version, CVS, or Visual SourceSafe, which are all centralized version control systems.
In centralized systems there is a master server and everyone else has a copy of the
code that they need to synchronize with the master. With Git, every repository, from
the one on your laptop to the one on a remote server, is considered a legitimate mas‐
ter. Everything is kept in sync through patches sent between repositories. You can use
Git as a pseudo-centralized version control system by having everyone on the team
agree on “the master.” Wikipedia has a good discussion about some of the differences
between centralized and distributed version control systems.

The important thing to keep in mind about Git is that the Git repository on your
machine is considered a repository, and you need to commit your changes there first.
That means you have to add any new files and commit any changes on your local
machine before you can push your changes to any other Git repository.

21

http://git-scm.com/
http://bit.ly/1Zign7I

On OpenShift, in order to take advantage of the S2I builder images, you will need to
have your source code in a reachable Git repository. By reachable, we mean that your
OpenShift server has the ability to see the repository and clone contents over the net‐
work. This can include both public and private repositories as long as OpenShift can
establish a network connection to the Git repository host. For the work we do here,
you will have two Git repositories:

• A remote repository on GitHub (or any public Git repository of your choice)
• A local repository on your local machine

There are three basic commands you need to work with OpenShift:

git add

Add a file to your local Git repository. Even if you have a file in the directory rep‐
resenting your Git repo, it is not considered part of the repository until you add
it.

git commit

Commit any changes you have made to your local repository.

git push

Push the changes from your local repository up to your publicly addressable
repository on GitHub.

If you are interested in learning more, you’re in luck; there are several different decent
documents to get you going. If you are coming from Subversion land, there is even a
Git introduction for you. The fine people at GitHub have also put together a nice
collection of resources about Git.

A quick note about the difference between Git and GitHub. Git is the tool, and Git‐
Hub is a site that allows for public and private hosting of Git repositories. GitHub
also adds a lot of social features, making it very easy for developers to find and collab‐
orate on code. That said, you can certainly use GitHub with OpenShift while using
the automated builder images provided with S2I.

WildFly
If you are a Java Developer, you are probably familiar with the WildFly application
server from Red Hat. If not, what you need to know is that WildFly is an application
server that implements the Java Platform, Enterprise Edition specification, often
referred to as Java EE. What you may not know is that WildFly was formally known
as JBoss AS and went through a name change in November of 2014. This was done to
more closely align with the open source community the server is targeted at and to
ensure developers were not confused between JBoss AS and JBoss EAP.

22 | Chapter 4: Developing and Deploying Your First Application

http://bit.ly/1dubZuh
http://bit.ly/1mjkIaS
http://bit.ly/1r0Je1h
http://bit.ly/1gLk81Y
http://bit.ly/O86g76
https://github.com

WildFly is a free and open source project under the LGPL version 2.1 license. For this
book, we are going to be using version 10 of the WildFly application server that was
released in February of 2016.

We will be using the WildFly server for this example but the code
will also work on the popular Tomcat server.

For more information on the WildFly application server, refer to the official website.

If you are not a Java developer, don’t fret, as you can still follow along with the exerci‐
ses in this book as the main purpose is to learn how to interact with the platform. The
process is almost identical regardless of the programming language or server your
application project uses.

Creating Our First Application
Now that we understand the basic tools we need for our first application, Git and
WildFly, it’s time to dig in and start working with the platform. However, we do have
to complete one additional step before we actually deploy our first application: we
need to fork, or make a copy of, the sample application we will be using in this chap‐
ter.

Creating a Copy of the Sample Application
In Chapter 1, you created an account on the popular GitHub service. Now we are
going to use that account to fork the application code that we will be using to deploy.
As is often standard practice in technical books, the first application we are going to
deploy is a simple Hello, world application. Let’s get started.

Log in to your GitHub account and then point your browser to the repository for the
sample application.

Once the page has loaded, and you are authenticated with your GitHub account, you
should see a fork button in the upper righthand corner of the screen as shown in
Figure 4-1.

Creating Our First Application | 23

http://wildfly.org
https://github.com/gshipley/book-helloworld
https://github.com/gshipley/book-helloworld

Figure 4-1. Fork project

After you fork the application code, you will have a working copy in your account
that you are free to modify and use for deployment on the platform.

Creating the Application
Now that we have a copy of the source code project in our personal GitHub account,
we can create a project and a corresponding pod that will contain our deployed
source code. The first thing we want to do is log in to the web console by opening up
the following URL: https://10.2.2.2:8443.

When prompted for the username and password, use the following:

• Username: user
• Password: password

Next, click the New Project button, which will drop you in the projection creation
flow as shown in Figure 4-2.

Figure 4-2. New project

Enter this information in the fields provided:

24 | Chapter 4: Developing and Deploying Your First Application

https://10.2.2.2:8443

Field Name What to enter Description
Name wfproject The name of your project

Display Name WildFly Project The project name that will be displayed in the UI

Description Application using WildFly server Details about your project

Project names have to be unique across the entire OpenShift envi‐
ronment. You can think of a project as a unique namespace for
your applications.

After you fill in the fields above, click Create. You will then select the type of template
you would like to use for your first application. For this example, click the wildfly:10.0
application template. You will then name your application as well as the URL for your
GitHub repository that we forked previously in this chapter, as shown in Figure 4-3.

Figure 4-3. Select template

Enter helloworld as the name, and then paste the URL for your repository on Git‐
Hub. If you are not familiar with GitHub, the repository URL is shown on the reposi‐
tory home page as shown in Figure 4-4.

Figure 4-4. GitHub repo URL

Creating Our First Application | 25

Many first-time users of GitHub find that the repository URL is not
the same URL displayed in the browser. A Git repository URL nor‐
mally ends with the .git extension.

Once you have entered in the name and correct repository URL, click the Create but‐
ton. Then watch the magic begin!

At this point, the process we discussed in Chapter 1 regarding S2I is executed.
Depending on the speed of your Internet connection, this may take a few minutes as
the builder image is downloaded and the source code for the project is compiled. You
will know your source code is ready when the indicator for your pod turns blue as
shown in Figure 4-5.

Figure 4-5. Running pod

Note that the application also has an associated route, which is the DNS name for
your application on your local network. In this specific example, the URL is
helloworld-wfproject.apps.10.2.2.2.xip.io. If you click that URL you will be directed to
the running application and will see the following content on the displayed web page:

Hello, OpenShift.

Congratulations! You are now officially an expert at deploying Java-based projects
using Docker-based containers. That wasn’t so bad, was it?

26 | Chapter 4: Developing and Deploying Your First Application

Making a Code Change and Starting a New Build
In the previous section, we deployed a very simple application. It is also important to
understand how to modify the code and begin a new build of your project.

If you don’t have the project cloned locally to your machine, do that now. If you are
not familiar with Git, you will want to execute the following command in the direc‐
tory where you would like the source code to be stored ensuring you replace
your_repository_url with the correct .git repo file you used to create the project:

git clone your_repository_url

To see how modifying code works with the platform, open up your favorite editor, or
IDE, and edit the following file in the repository:

src/main/webapp/index.html

Find the following line:

<h1>Hello, OpenShift.</h1>

Change it to:

<h1>Hello, OpenShift builds.</h1>

Now that you have modified some super mission critical source code, it’s time to
commit the change to your local repository and then push the change to the remote
repository on GitHub. To accomplish this, issue the following commands:

git commit -am "Updated index.html to change message."
git push

You can verify that the change was reflected in your upstream (GitHub) repository by
visiting your project on the GitHub web console.

Now we need to start a new build of our application so OpenShift can deploy the new
source. Go to the project overview page inside the OpenShift web console and then
click Browse and then Builds. You will see a table listing each of the different types of
builds that have been created for your project. At this point, you should only see one
build with the following information:

Name Last Build Status Created Type Source
helloworld #1 Complete in one minute, 14 seconds 9 minutes ago Source repo URL

Note that the name of the build (helloworld) is actually a link. Click the name and you
will be taken to the build overview page as shown in Figure 4-6.

Making a Code Change and Starting a New Build | 27

Figure 4-6. Build overview

Once you click the Start Build button, a new build will be triggered that will clone the
updated source code from the application’s GitHub repository and the remainder of
the S2I flow will be executed. Once the build and deployment are complete, you will
be able to see the result of the modifications by clicking the application’s URL dis‐
played on the project overview page in the web console. In this specific example, the
URL is helloworld-wfproject.apps.10.2.2.2.xip.io.

Summary
In this chapter, we learned how to create and deploy our first application on the
OpenShift platform. After we deployed the application, we learned how to make a
code change and perform a new build. In the next chapter, we will continue working
on the application by looking at adding dependencies for the language runtime as
well connecting and using a database on the OpenShift platform.

28 | Chapter 4: Developing and Deploying Your First Application

CHAPTER 5

Adding Dependencies and a Database

In the last chapter, we deployed a very simple Hello, world application. In this chapter
we are going to create a new application that contains a more real-world example. In
the application we will be building here the user will be insulted with a friendly mes‐
sage. What could be more fun than that? How about a Elizabethan insult chosen ran‐
domly? These Shakespearean insult words have been floating around the Internet
since before dial-up. Let’s put them to good use complete with a database backend
and a HTTP-based API. The insult consists of two adjectives and a noun and will
look something like this:

Thou art a Mewling Motley-minded Vassal!

Let’s get started.

Creating the Base Application
We are going to start simple by deploying a static version of the insult application that
simply randomly chooses an insult and then displays it on a JSP page. In a previous
chapter, you learned how to fork an application on GitHub. We are going to following
those steps so we have a starting point for this application that we will then modify.

Forking the Repository and Deploying the Application
Point your favorite browser to the project’s GitHub page.

Once you have the repository open in your browser, fork the repository by clicking
on the Fork button on the top righthand side of the screen. This will create a copy of
the repository that you can modify.

After the project has been forked to your account, the next step is to create a new
project to hold our application code and then deploy it using the WildFly application

29

https://github.com/gshipley/book-insultapp

server. Let’s start by creating a new project called insultapp using the following com‐
mand:

oc new-project insultapp --display-name="Elizabethan Insult Application"

This command will create a new project for us called insultapp and will also be dis‐
played in the WebUi with the display name we provided as shown Figure 5-1.

Figure 5-1. Project list

The next thing we need to do is create a deployment that contains our application
code. We can do this with the oc new-app command while specifying the image we
want to use as well as the repository we want to use for the build.

oc new-app wildfly:latest~https://github.com/gshipley/book-insultapp.git
--name='insults'

It is important to remember to use the repository URL for the version you forked and
not the one shown in the example above.

You may be wondering what the tilde character in the oc new-app command means.
When creating containers on the OpenShift platform it means you want to use an
existing source code repository and take advantage of the S2I build process. After
entering the preceding command, you will see the following output, which indicates
the application deployment process has started:

--> Found image 330a039 (5 weeks old) in image stream "wildfly in project
 openshift" under tag :latest for "wildfly:latest"
 * A source build using source code from
 https://github.com/gshipley/book-insultapp.git will be
 created
 * The resulting image will be pushed to image stream
 "insults:latest"
 * This image will be deployed in deployment config "insults"
 * Port 8080/tcp will be load balanced by service "insults"

30 | Chapter 5: Adding Dependencies and a Database

--> Creating resources with label app=insults ...
 ImageStream "insults" created
 BuildConfig "insults" created
 DeploymentConfig "insults" created
 Service "insults" created
--> Success
 Build scheduled for "insults" - use the logs command to track
 its progress.
 Run 'oc status' to view your app.

Testing the application
Once the Insult application has been deployed, the last thing we need to do is expose
a route to the application and then verify that it is indeed serving up insults. To
expose a route, issue the following command:

oc expose service insults

One of the advantages of creating and deploying applications from
the web console is that a route is automatically created for you.
When deploying new containers while using the oc tool, you will
need to expose the service manually.

Finally, we can verify that the application is working by visiting it via the exposed
URL, which can be found in the web console or by running the following command:

oc get routes

The output will look like the following:

NAME HOST/PORT PATH SERVICE LABELS
insults insults-insultapp.apps.10.2.2.2.xip.io insults app=insults

What are you waiting for? Fire up your browser and get your first insult.

The code that generates the insults is pretty straightforward in that it just randomly
chooses two adjectives and a noun from a multidimensional string array. This is
shown in the following code, which can be found in the InsultGenerator.java file
under the /src/main/java/org/openshift directory:

package org.openshift;

import java.util.Random;

public class InsultGenerator {
 public String generateInsult() {
 String words[][] = {{"Artless", "Bawdy", "Beslubbering"},
 {"Base-court", "Bat-fowling", "Beef-witted"}, {"Apple-john",
 "Baggage", "Barnacle"}};
 String vowels = "AEIOU";
 String article = "an";

Creating the Base Application | 31

 String firstAdjective = words[0][
 new Random().nextInt(words[0].length)];
 String secondAdjective = words[1][
 new Random().nextInt(words[1].length)];
 String noun = words[2][new Random().nextInt(words[2].length)];
 if (vowels.indexOf(firstAdjective.charAt(0)) == -1) {
 article = "a";
 }
 return String.format("Thou art %s %s %s %s!", article,
 firstAdjective, secondAdjective, noun);
 }
}

While the preceding code certainly works, we’d rather generate the insult using a
longer list of words that is easily updated without having to change application code.
For this reason, we are going to add the Postgres database to our application and then
import a schema that contains more words to choose from.

The first thing we need to do is add our database to our project using the web con‐
sole. Open up your browser and go to the Elizabethan Insult Application project we
created. Once you are on the Overview page, click the Add to project button at the top
of the screen as shown in Figure 5-2.

Figure 5-2. Add to project

On the next page that is displayed, type postgres in the filter box and select the
postgresql-persistent image (see Figure 5-3).

32 | Chapter 5: Adding Dependencies and a Database

Figure 5-3. Database selection

On the following page, you can specify configuration settings for your database such
as the amount of disk storage to use, username and password values, and the default
database name. For simplicity sake we are going to use the following values:

Field Name What to enter Description
Memory limit 512Mi Since this is a small database, we only need 512 megabytes of memory.

Database service name postgresql The name of the resulting OpenShift service.

PostgreSQL user insult The username that has permission to use the database. If empty, it will be auto-
generated.

PostgreSQL password insult The password for the user. If empty, it will be auto-generated.

PostgreSQL database
name

insults The name of the initial database that will be created.

Once you have provided the values in the above table, click the Create button to
deploy a pod running your PostgreSQL container. Once the database has been cre‐
ated, your project overview page should list both your application code pod and your
database pod, as shown in Figure 5-4.

Creating the Base Application | 33

Figure 5-4. Project overview

One of the great features of the OpenShift platform is the ability to
provide persistent volumes for your running pods. This ensures
that data in your database doesn’t suddenly disappear if the con‐
tainer is restarted. Another important aspect of persistent volumes
is the ability to run both stateful and stateless applications on the
platform. This is sometimes referred to as mode 1 and mode 2
applications as well as legacy and 12-factor applications.

Linking the database to the application
When we added the database, the platform stored all of the information needed to
connect to the database as system environment variables initially only accessible to
the database pods. The following variables were created in this example:

POSTGRESQL_PORT_5432_TCP_ADDR=172.30.76.249
POSTGRESQL_PORT=tcp://172.30.76.249:5432
POSTGRESQL_SERVICE_PORT_POSTGRESQL=5432
POSTGRESQL_PORT_5432_TCP=tcp://172.30.76.249:5432
POSTGRESQL_SERVICE_HOST=172.30.76.249
POSTGRESQL_DATABASE=insults
POSTGRESQL_PASSWORD=insult
POSTGRESQL_VERSION=9.4
POSTGRESQL_PORT_5432_TCP_PORT=5432

34 | Chapter 5: Adding Dependencies and a Database

POSTGRESQL_SERVICE_PORT=5432
POSTGRESQL_PORT_5432_TCP_PROTO=tcp
POSTGRESQL_USER=insult

In order to be able to communicate to the database using these environment vari‐
ables, we need to add them to DeploymentConfig for our insult application. Adding
the environment variables to DeploymentConfig instead of directly in the running
pod ensures that any new pod will be started with the variables it needs to connect.
You could certainly just hard code these values in your application code but that is
not a best practice! This can be done using the following command:

oc env dc insults -e POSTGRESQL_USER=insult -e PGPASSWORD=insult
POSTGRESQL_DATABASE=insults

For the password you may notice that we used PGPASSWORD
instead of POSTGRESQL_USER_PASSWORD. This is because the
PostgreSQL database expects the password in this variable so you
don’t have to provide it when running psql on the command line,
which we will just in just a few moments.

After you enter the above command, the “truth” of the application state will have
changed, meaning that for a deployment to be considered valid, the running pod
must contain those environment variables. This means a new rolling deployment will
occur and your existing pod will be replaced with a new one. Pretty awesome stuff!
You could have just as easily modified DeploymentConfig using the web console by
editing the .yaml file directly. In order to modify .yaml files in the web console,
browse to the deployment section and then click Edit YAML under the actions but‐
ton.

Importing the database schema
At this point we have our application code deployed and a database running, but the
database is empty so we need to fix that! In the source code repository for the applica‐
tion I have provided a file called insults.sql that contains all of the SQL needed to cre‐
ate our schema. An excerpt of the SQL is as follows:

DROP TABLE IF EXISTS short_adjective;
DROP TABLE IF EXISTS long_adjective;
DROP TABLE IF EXISTS noun;

BEGIN;

CREATE TABLE short_adjective (id serial PRIMARY KEY, string varchar);
CREATE TABLE long_adjective (id serial PRIMARY KEY, string varchar);
CREATE TABLE noun (id serial PRIMARY KEY, string varchar);

INSERT INTO short_adjective (string) VALUES ('artless');
INSERT INTO short_adjective (string) VALUES ('bawdy');

Creating the Base Application | 35

INSERT INTO short_adjective (string) VALUES ('beslubbering');
INSERT INTO short_adjective (string) VALUES ('bootless');
INSERT INTO short_adjective (string) VALUES ('churlish');
INSERT INTO short_adjective (string) VALUES ('cockered');
INSERT INTO short_adjective (string) VALUES ('clouted');
INSERT INTO short_adjective (string) VALUES ('craven');

We need to import the SQL to our database. We will use the Terminal application pro‐
vided as part of the web console.

If you don’t like using the web console, you can also use the oc rsh
command to open up a remote shell on the running container.

1. From the project overview screen, click the blue circle for your WildFly server
(not your database) to list the pods that are currently running for your applica‐
tion, as shown in Figure 5-5.

Figure 5-5. Accessing the list of pods

2. After selecting the blue circle, you will then be shown a list of all the pods that are
currently running. In this case, as shown in Figure 5-6, you will have only one
pod running.

36 | Chapter 5: Adding Dependencies and a Database

Figure 5-6. Pod list

3. Click the pod name and then click the Terminal button near the top of the screen,
as shown in Figure 5-7.

Figure 5-7. Pod overview

This will open up a terminal session on the WildFly container that is running
inside of the pod (Figure 5-8).

Figure 5-8. Pod terminal

Creating the Base Application | 37

4. Once you have the terminal open, you can import that schema with the following
command:

psql -h $POSTGRESQL_SERVICE_HOST -p $POSTGRESQL_SERVICE_PORT \
 -U $POSTGRESQL_USER $POSTGRESQL_DATABASE < insults.sql

Bam! You now have several tables created inside of your database that contain a ple‐
thora of words to choose from to insult your users.

When working with the terminal inside of the web console, I find it
very useful to set my term type so that I have history and better
usability for editing files. To do this, issue the following command:

export TERM=xterm

Adding the Database to the Application
We have this fancy new database created and linked to our application, but we aren’t
using it in our source code yet. In order to use the database we must first add a
dependency for the database driver in our maven pom.xml file. Open up the file in
your favorite IDE or editor and add the following section after the </properties> tag:

<dependencies>
 <dependency>
 <groupId>org.postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <version>9.4-1200-jdbc41</version>
 </dependency>
</dependencies>

Once the dependency for the PostgreSQL driver has been added, we need to modify
our InsultGenerator.java source file to connect to and run queries against the new
database. Open this file in your IDE or text editor and replace the contents with the
following:

package org.openshift;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;

public class InsultGenerator {
 public String generateInsult() {
 String vowels = "AEIOU";
 String article = "an";
 String theInsult = "";

 try {

38 | Chapter 5: Adding Dependencies and a Database

 String databaseURL = "jdbc:postgresql://";
 databaseURL += System.getenv("POSTGRESQL_SERVICE_HOST");
 databaseURL += "/" + System.getenv("POSTGRESQL_DATABASE");

 String username = System.getenv("POSTGRESQL_USER");
 String password = System.getenv("PGPASSWORD");
 Connection connection = DriverManager.getConnection(databaseURL, username,
 password);

 if (connection != null) {
 String SQL = "select a.string AS first, b.string AS second, c.string AS noun
 from short_adjective a , long_adjective b, noun c ORDER BY random() limit 1";
 Statement stmt = connection.createStatement();
 ResultSet rs = stmt.executeQuery(SQL);
 while (rs.next()) {
 if (vowels.indexOf(rs.getString("first").charAt(0)) == -1) {
 article = "a";
 }
 theInsult = String.format("Thou art %s %s %s %s!", article,
 rs.getString("first"), rs.getString("second"), rs.getString("noun"));
 }
 rs.close();
 connection.close();
 }
 } catch (Exception e) {
 return "Database connection problem!";
 }
 return theInsult;
 }
}

Don’t worry if you don’t want to type in all of the above source code. You can find this
modified application on GitHub.

Once you have made the changes, committed them, and pushed them to your public
GitHub repository, it’s time to start a new build to deploy the new version of the
source code. This can be done by clicking on the Start Build button while looking at
the builds in the web console. Alternatively, you can start a new build using the oc
tool with the following command:

oc start-build insults

Once the build has finished, verify that your application is working by viewing it in
the web browser.

Adding a REST Endpoint
We are on a roll with adding additional functionality to our application so let’s keep
this train chugging down the tracks. The last thing we want to add to our insult gen‐
erator is the ability to return an insult as a JSON document. Having an HTTP-based

Adding a REST Endpoint | 39

https://github.com/gshipley/book-insultapp-final

endpoint that provides the response in JSON will allow those that prefer to parse
their insult with all the luxury they have come to expect when working with JSON
documents.

The first thing we want to do is add a dependency for Java EE that allows us to use
JaxRS to generate the results. Open the pom.xml that we modified previously in this
chapter and add the following dependency:

<dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
</dependency>

Now that we have our dependency added to our pom.xml file, it’s time to add two Java
classes that will expose the endpoint. The first one is a simple JaxrsConfig.java file
that specifies the application path our services will reside on. Create a new file called
JaxrsConfig.java in the /src/main/java/org/openshift directory and add the following
code:

package org.openshift;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/api")
public class JaxrsConfig extends Application{
}

The last thing we need to do is define our endpoint that will return the insult. Create
a new file named InsultResource.java under the /src/main/java/org/openshift directory
with the following source code:

package org.openshift;

import java.util.HashMap;
import javax.enterprise.context.RequestScoped;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;

@RequestScoped
@Path("/insult")
public class InsultResource {

 @GET()
 @Produces("application/json")
 public HashMap<String,String> getInsult() {
 HashMap<String, String> theInsult = new HashMap<String, String>();
 theInsult.put("insult", new InsultGenerator().generateInsult());
 return theInsult;

40 | Chapter 5: Adding Dependencies and a Database

 }
}

These two source files will expose an endpoint at the /api/insult URL and listen for
GET requests. Once a request is made, a JSON document will be returned with an
insult that is provided by the PostgreSQL database we added earlier in this chapter.

Once you have code added, committed, and pushed to your repository, start a new
build on OpenShift. Once the build has completed, browse to your endpoint and you
should see the following JSON response:

{"insult":"Thou art a dankish weather-bitten minnow!"}

Summary
In this chapter, we learned how to add a database to an existing project. Once we
added the database, we learned how to link the database to an existing deployment
configuration inside of the project. We also learned how to use the terminal from the
web console to import schema into the database. In the next chapter, we look at how
to scale up your application to handle more users, and how to automate aspects of the
deployment of your application.

Summary | 41

CHAPTER 6

Deploying and Scaling Your Application

By now you have successfully deployed both the Hello, World and Insults applications
based on the WildFly application server for Java. applications aren’t static and as you
continue to make changes you will want to keep redeploying the application. We
already showed you how you can manually trigger a rebuild and redeployment of
your application, but doing that all the time can get repetitive. In this chapter we dis‐
cuss how to define triggers so that any time you push changes to your code repository
on GitHub, your application will be automatically rebuilt and redeployed. We will
also look at how to scale your application, deployment strategies when releasing new
versions, application health checks, and rollbacks.

Automatic Deployments Using Webhooks
A webhook (also called a web callback or HTTP push API) is a way an application
can provide other applications with real-time information or notifications.

We can configure the GitHub code hosting service to trigger a webhook each time we
push a set of changes to your project code repository. Using this tool, we can notify
OpenShift when you have made code changes and thus initiate rebuild and redeploy‐
ment of our application.

Adding Our Webhook URI to GitHub
Before we can configure GitHub with a webhook for your application, we need to
first find the webhook URI for your particular application:

1. Navigate back to the Builds page for the helloworld application in the OpenShift
web console. But this time click the Configuration tab (see Figure 6-1).

43

Figure 6-1. GitHub webhook URL

2. In the Triggers section you will find two different types of webhook URLs speci‐
fied: Generic webhook URL and a GitHub webhook URL. Since we are going to
configure GitHub with a webhook, select and use the GitHub webhook URL.

3. Head to GitHub and find the code repository created when you originally forked
the helloworld project. Find the Settings tag and select it, as shown in Figure 6-2.

Figure 6-2. Settings on GitHub

4. Next, select the Webhooks & services option, as shown in Figure 6-3.

Figure 6-3. Webhooks & services on GitHub

5. Then the Add webhook button, as shown in Figure 6-4.

44 | Chapter 6: Deploying and Scaling Your Application

Figure 6-4. Add webhook on GitHub

6. This will bring you to the page where you can enter the callback URL for the
webhook. At this point you should copy and paste the GitHub webhook URL
from the Builds page of the OpenShift web console into the Payload URL field, as
shown in Figure 6-5.

Figure 6-5. Setting callback URL on GitHub

7. Finally, you can select the Add webhook button.

Automatic Deployments Using Webhooks | 45

If your OpenShift instance has been set up with a self-signed SSL
certificate for HTTPS connections, you will need to select Disable
SSL verification. If this is not done, GitHub will first attempt to ver‐
ify the SSL certificate when connecting, which for a self-signed cer‐
tificate will fail.

Visibility of Your OpenShift Instance
At this point, whenever you push a code change to your GitHub repository for your
application, the application will be automatically rebuilt and deployed. But we do
though have to admit to a slight fib.

For the webhook mechanism to work, your OpenShift instance must be visible from
GitHub. In other words, the OpenShift instance must be hosted on a publicly visible
URL.

In this book, we use the all-in-one VM image running on your own machine.
Although we use the xip.io service to give the impression that your application is
accessible over the public Internet, it isn’t really and can only be accessed from your
local system. This is because the IP address 10.2.2.2 is actually a private address.

Sorry for this slight detour, but we wanted to explain all the required steps. That way
when you are using an OpenShift instance that is visible to your source code reposi‐
tory service, you will still know how to set it up. If you want to be able to use this
feature using the all-in-one VM, you will need to use a webhook proxy service such
as Ultrahook.

Finally, although we have provided an example here for setting up GitHub, other
source code repository services are also supported. You will just need to work out
whether they make use of a webhook mechanism compatible with GitHub, or if they
can be set up to generate a callback suitable for use with the generic webhook URL
endpoint. Use whichever is appropriate for your service.

Scaling Your Application
You are now in a position to make code changes to your application and have it auto‐
matically deployed. So far, we’ve been running with a single instance of your applica‐
tion. WildFly, upon which your application is based, can scale up to handle a high
number of connections, but eventually you may hit a limit on the amount of CPU
resources available to you if resource limits have been defined for a pod.

In order to handle the greater load you will need to scale out the number of instances
of your application. But don’t fear—OpenShift makes this an easy task. All you need
to do is specify the number of replicas of your application that you want running.

46 | Chapter 6: Deploying and Scaling Your Application

http://www.ultrahook.com

OpenShift will then work out the best place to run your application, as well as set up
routing to load balance requests across as many copies as you have.

Scaling from the Web Console
Scaling up the number of instances of your application running can be done from the
Overview page for your application in the OpenShift web console (the page with
those tell-tale up and down arrows we saw previously). Jump to that page and click
the up arrow key twice to increase the replica count to 3, as shown in Figure 6-6.

Figure 6-6. Scaling up

Once you do this, you will see the tracker for the number of instances running
change as the target number is updated and the new instances are started. Once they
are all running, you can reduce it again by selecting the down arrow.

Decreasing the number of replicas down to zero is possible, but OpenShift will dis‐
play a popup to confirm the action. This is because reducing the replica count to zero
is the same as putting your application offline. If users try to connect, the OpenShift
router will still accept the connection, but will return a HTTP 503 Service Unavail‐
able error because there will be no copy of your application to route traffic to.

If you were running a production application it would be better to put up a mainte‐
nance page indicating a planned outage, but if you needed to take a site down in a
hurry over security concerns or some other reason, reducing the replica count to zero
is an easy way to do it.

Scaling Your Application | 47

Applications Suitable for Scaling
Although OpenShift will let you scale up any application you may have started, you
do need to ensure that any application is safe to scale up to more than one instance.

If your application is a web application that adheres to the 12-factor methodology, or
what might also be called a cloud native application, then it would generally be safe to
scale up.

Applications that can’t usually be able to be scaled up include traditional relational
databases backed by persistent storage. Databases cannot be scaled in the traditional
way as only the primary instance of the database should have the ability to update
data. Scaling can still be performed, but usually only on read-only instances of the
database.

Automatic Scaling of an Application
In the previous section, we manually scaled up the application from the web console,
but OpenShift also supports automatic scaling. While we don’t cover auto scaling
here, it works by defining upper and lower thresholds for CPU usage by pod. If the
upper threshold is consistently exceeded by the running pods for your application, a
new instance of your application will be started. When CPU usage drops back below
the lower threshold, because your application is no longer working as hard, the num‐
ber of instances will be scaled back again.

Deployment Strategies
A deployment strategy defines the process by which a new version of your application
is started and the existing instances shut down. By default OpenShift uses a rolling
deployment strategy that enables you to perform an update with no apparent down
time.

But this default strategy isn’t suitable for all applications, so it is important to under‐
stand all the strategies available so you can be sure you are using the correct one.

Rolling Strategy
A rolling deployment slowly replaces instances of the previous version of an applica‐
tion with instances of the new version of the application. A rolling deployment can
wait for new pods to become ready via a readiness check before scaling down the old
instances. Such a readiness check allows a rolling deployment to be aborted if a prob‐
lem occurs.

This is the default deployment strategy in OpenShift. Because it runs old and new
instances of your application in parallel and balances traffic across them as new

48 | Chapter 6: Deploying and Scaling Your Application

http://12factor.net

instances are deployed and old instances shut down, it enables an update with no
down time.

As you make code changes, when deploying the new version of your application you
have to consider whether the new code will work with the existing data stored in a
database. If old and new code require different versions of the database model, you
should not use the rolling strategy.

Also remember what we said previously about scaling up applications. For some
applications it wouldn’t be safe to run more than one instance at any time, even if
there had been no code changes.

A rolling deployment is therefore not suitable where multiple instances of the same
application cannot be run at the same time, or where instances of both old and new
code cannot be run at the same time.

Recreate Strategy
Rather than starting up new instances of your application while still running old
instances, the recreate strategy first shuts down all running instances of the old appli‐
cation. Only after all the old instances of the application have been shut down will the
instances using the new code be started.

This strategy should be used where you cannot run more than one instance of your
application at the same time, or where you cannot run instances using old and new
code at the same time. If you were running a traditional relational database, you
would typically use this deployment strategy. It should also be used for a front-end
web application when you need to perform a database migration as part of the
deployment. We will talk more about database migrations later when discussing life‐
cycle hooks.

With this strategy, as all old instances of the application will be stopped before
deploying instances with the new code, there may be a period of time when your
application is not available. Unless you have taken steps to first route traffic to a tem‐
porary application that shows a maintenance page, users will see a HTTP 503 Service
Unavailable error response.

Changing the Strategy
At the time of writing, to change the deployment strategy we need to drop below the
covers of what the OpenShift web console and command-line tools provide direct
support for and edit the Deployment Configuration directly. To do this we are going to
use the oc edit command:

oc edit dc/insults -o json

Deployment Strategies | 49

This command will start up an editor displaying the deployment configuration in
JSON format. Find in the deployment configuration the “strategy” subsection located
under the spec section. Replace this definition, substituting "Recreate" for the
"type" attribute, as shown here:

 "spec": {
 "strategy": {
 "type": "Recreate"
 },

Implementing Custom Strategies
In addition to these two basic deployment strategies, various other more complicated
strategies can be implemented including Blue-Green or A/B deployment strategies.
These can be implemented by using multiple deployment configurations and reconfi‐
guring what pods are associated with the exposed service for an application using
labels. Custom strategies like this can be set up manually, or you can provide an
image that embeds the logic for handling a deployment and that interacts with Open‐
Shift via the REST API to make the changes in resources associated with the applica‐
tion.

Application Health Checks
Your application is starting up okay, but how can you monitor it to know whether it is
actually ready to handle requests? Even if it starts out handling requests okay, how
can you know whether it fails at some point and stops handling new requests? This is
where high-level application health checks come in.

Two primary types of health checks are provided: a readiness probe and a liveness
probe.

The readiness probe is used to determine if a new instance of your application is run‐
ning properly before reconfiguring the router to send traffic to it, while a liveness
probe is run periodically once traffic has been switched to an instance of your appli‐
cation to ensure it is still behaving correctly. If the liveness probe fails, OpenShift will
automatically shut down that instance of your application and replace it with a new
one.

Both types of probes can be implemented three different ways:

HTTP check
The container is considered healthy if a HTTP request against a defined URL
returns with a HTTP 200 or 399 status code.

50 | Chapter 6: Deploying and Scaling Your Application

Container execution check
The container is considered healthy if a defined command run inside of the con‐
tainer returns with a 0 exit status.

TCP socket check
The container is considered healthy if a connection can be established to the
exposed port of the application.

You can check the deployment logs for details of any errors in the event that a probe
fails.

Try adding an HTTP type readiness probe check to the Insults application using the
command:

$ oc set probe dc/insults --readiness --get-url=http://:8080/healthz
deploymentconfig "insults" updated

Because a configuration change was made, a new deployment will be triggered imme‐
diately. On the Overview page, you will see the new deployment being run, displayed
above the existing one and marked as In Progress, as shown in Figure 6-7.

Figure 6-7. Readiness probe

The new deployment will stay in this state for a period, eventually moving to a failed
state, because although we added a readiness probe, the application doesn’t provide

Application Health Checks | 51

one at that URL. As a result the application always returns an HTTP status code of
404.

But change the HTTP URL for the readiness probe to be the root URL for the site:

$ oc set probe dc/insults --readiness --get-url=http://:8080/
deploymentconfig "insults" updated

and you will see the failed deployment removed and yet another new deployment
performed. Because this time the readiness probe uses a valid URL that returns a 200
HTTP status code, it will be seen as ready, with traffic switched to the new instance
and the old instances shut down.

Readiness probes can be used to check whether a new instance of your application is
running okay before switching traffic to it, thereby reducing the chance that your new
application is broken causing your site to be unavailable.

Deployment Lifecycle Hooks
Health checks are great for determining if your application is running okay. But what
if you require special steps as part of your deployment? This is what lifecycle hooks
are for.

An example of a step you might run would be to set a database flag to cause a site
maintenance page to be put up by your web application at the start of the deploy‐
ment, with it removed once the deployment is complete. You could also use an appro‐
priate lifecycle hook to run a database migration, although keep in mind what we said
earlier about the different types of deployment strategies and find the one most suit‐
able for your project.

There are three different types of lifecycle hooks available:

Pre
This hook is executed before any new instance of your application for a deploy‐
ment is started and also before any old instances have been shutdown.

Mid
When using the Recreate deployment strategy, this is executed after all old instan‐
ces of your application have been shut down, but before any new instances of
your application have been started. This hook is usually used where you can
safely run any database migrations.

Post
This is executed after all instances of your application for a deployment have
been started and old instances have been shut down.

52 | Chapter 6: Deploying and Scaling Your Application

Both of the applications we have deployed so far use the rolling deployment strategy.
Let’s configure the Insults application with both a pre and post hook so you can see
when a new deployment is starting and when it finishes.

As before when updating the deployment strategy, to set a deployment lifecycle hook
we use the oc edit command.

Run this command again:

oc edit dc/insults -o json

From the editor find the “strategy” subsection under the deployment configuration
"spec" section. We are going to restore this to a rolling deployment strategy. To that
we are then going to add "pre" and "post" sections under "rollingParams" to yield:

 "spec": {
 "strategy": {
 "type": "Rolling",
 "rollingParams": {
 "pre": {
 "failurePolicy": "Abort",
 "execNewPod": {
 "command": [
 "/usr/bin/echo",
 "RUNNING PRE HOOK"
],
 "containerName": "insults"
 }
 },
 "post": {
 "failurePolicy": "Abort",
 "execNewPod": {
 "command": [
 "/usr/bin/echo",
 "RUNNING POST HOOK"
],
 "containerName": "insults"
 }
 }
 }
 },

Adding lifecycle hooks will not automatically cause a redeployment, so trigger a new
deployment by running the oc deploy command:

$ oc deploy insults --latest
Started deployment #10

This time when deployment occurs, a transient instance of the insults container for
your application will be started and the command defined by the lifecycle hook run.

Deployment Lifecycle Hooks | 53

You can watch the progress as the containers are started and stopped using the oc
get pods command:

$ oc get pods --watch
insults-10-deploy 0/1 Pending 0 3h
insults-10-deploy 0/1 Pending 0 3h
insults-10-deploy 0/1 ContainerCreating 0 3h
insults-10-hook-pre 0/1 Pending 0 3h
insults-10-hook-pre 0/1 Pending 0 3h
insults-10-hook-pre 0/1 ContainerCreating 0 3h
insults-10-deploy 1/1 Running 0 3h
insults-10-hook-pre 0/1 Completed 0 3h
insults-10-rbo58 0/1 Pending 0 3h
insults-10-rbo58 0/1 Pending 0 3h
insults-10-rbo58 0/1 ContainerCreating 0 3h
insults-10-rbo58 0/1 Running 0 3h
insults-10-rbo58 1/1 Running 0 3h
insults-9-sc3fz 1/1 Terminating 0 3h
insults-9-sc3fz 1/1 Terminating 0 3h
insults-10-hook-post 0/1 Pending 0 3h
insults-10-hook-post 0/1 Pending 0 3h
insults-10-hook-post 0/1 ContainerCreating 0 3h
insults-10-hook-post 0/1 Completed 0 3h
insults-10-deploy 0/1 Completed 0 3h
insults-10-deploy 0/1 Completed 0 3h
insults-10-hook-post 0/1 Completed 0 3h
insults-10-hook-pre 0/1 Completed 0 3h
insults-9-sc3fz 0/1 Terminating 0 3h
insults-9-sc3fz 0/1 Terminating 0 3h

The containers in which the lifecycle hooks are run are short-lived and are automati‐
cally cleaned up. But if you are quick enough you should be able to capture the mes‐
sages logged from the corresponding pod using the oc logs command or from the
OpenShift web console. We will talk about the oc logs command and how to use it
in a later chapter.

Try experimenting with the post hook, replacing the command with /usr/bin/false.
This will cause the overall deployment to fail and everything will be automatically rol‐
led back to the previous successful deployment.

Application Rollback
When using the readiness process with a lifecycle hook, if the check or action fails,
deployment will not proceed and everything will be returned to the previous state.

If deployment was successful, but you later find the application is failing in some way
due to the latest code changes, you will likely need a way to roll back to the last
known good version of your application.

To get a list of all the deployments that have been made, you can use the following:

54 | Chapter 6: Deploying and Scaling Your Application

oc describe dc/insults

Look for the list of deployments and find the last deployment before the current one,
which is marked as complete. You can roll back to this version using the oc rollback
command:

 $ oc rollback insults --to-version=10
#12 rolled back to insults-10
Warning: the following images triggers were disabled: insults:latest
 You can re-enable them with: oc deploy insults --enable-triggers -n insultapp

As noted in the command output, rolling back to a prior version will disable image
change and configuration change triggers. After addressing any issues and running a
new build, you will need to re-enable the triggers when starting the next deployment.

Summary
In this chapter, we introduced you to scaling and deployments. Many chapters could
be written on these topics alone, but we wanted to keep things as simple as possible.
You should have at least got a glimpse of the power that is available to you through
these features, as well as the oc command-line tool. We will look more at the oc
command-line tool and how it can be used to manage your application later on.

Summary | 55

CHAPTER 7

Using Application Templates

One of the first things a developer does when starting a new job or when deciding to
work on a project already in progress is to spend a good deal of time just getting their
environment set up and configured. This can take hours, days, or even a week
depending on the complexity of the project before they are able to run a full build
and deploy of the application assets. But wouldn’t it be nice if a new developer could
get a working environment up in a matter of minutes? This was our goal with appli‐
cation templates on the OpenShift platform, and we have made some great progress.
In this chapter will we explain what an application template is and how to use it.

What Is an Application Template?
The official OpenShift 3 documentation states:

A template describes a set of objects that can be parameterized and processed to pro‐
duce a list of objects for creation by OpenShift. The objects to create can include any‐
thing that users have permission to create within a project, for example services, build
configurations, and deployment configurations. A template may also define a set of
labels to apply to every object defined in the template.

This means that typically a template will include:

• A set of resources that is created as part of “creating/deploying” the template.
• A set of values for the parameters defined in the template.
• A matching label attached to each of the generated resources that provides a con‐

venient way to indicate the resources are connected.

A template will be defined in JSON or YAML format, and will be loaded into Open‐
Shift for user instantiation, also known as application creation.

57

http://red.ht/1NVyUGr

Templates can have global visibility scope (visible for every OpenShift project) or
project visibility scope (visible only for a specific project).

Benefits of Using Templates
A template provides developers with an easy way to create all the necessary OpenShift
resources for their application to work with minimal effort. This allows you to
quickly deploy an application without having to understand all the underlying tech‐
nology of the OpenShift 3 platform.

Using Our First Application Template
Now that we understand what an application template is and how it can beneficial to
a developer, let’s try using one. The application template we will be using will create a
full Java EE application and a MongoDB database that will perform geospatial queries
to update a map via REST endpoints. Sounds pretty complicated, right? Let’s get this
application stack up and running with just a few commands!

The first thing we want to do is create a new project to hold our application. Issue the
following command:

oc new-project parksapp --display-name="Baseball Parks Application Stack"

Once you have a new project, you can add the template to the project namespace with
the following command:

oc create -f https://raw.githubusercontent.com/gshipley/openshift3mlbparks/
master/mlbparks-template.json

This will make the template available only for the namespace that it was loaded to, in
this case the project. If you want a template to be available to any user on the system,
add it to the openshift namespace as the cluster administrator.

You can verify that the template was added by browsing to your project in the web
console. You should see it displayed an as available option to deploy as shown in
Figure 7-1.

58 | Chapter 7: Using Application Templates

Figure 7-1. Templates

To deploy this application stack as running containers, simply click the template and
then click the Create button. Your entire stack will be up and running in short order.
Pretty awesome stuff, huh?

If you wanted to create an application based on the template you loaded from the
command line, you would simply enter the following command:

oc new-app mlbparks --name="myparks"

There are many templates available today including ones for application stacks such
as Wordpress as well as Node.js coupled with MongoDB.

We spoke briefly about namespaces as it relates to application templates. To show the
available template for your current project, you can enter:

oc get templates

To show templates in another namespace you have permission to view, you can pro‐
vide the -n switch. For example, the list of templates available to anyone on the sys‐
tem that have been loaded by the cluster administrator, issue the following command:

oc get templates -n openshift

Using Our First Application Template | 59

At the time of writing, the following templates are loaded by default in the all-in-one
image we are using:

Name Description
datagrid65-basic Application template for JDG 6.5 applications.

datagrid65-https Application template for JDG 6.5 applications.

datagrid65-mysql Application template for JDG 6.5 and MySQL applications.

datagrid65-mysql-persistent Application template for JDG 6.5 and MySQL applications with persistent storage.

datagrid65-postgresql Application template for JDG 6.5 and PostgreSQL applications.

datagrid65-postgresql-persistent Application template for JDG 6.5 and PostgreSQL applications with persistent storage.

decisionserver62-amq-s2i Application template for BRMS Realtime Decision Server 6 A-MQ applications.

decisionserver62-basic-s2i Application template for BRMS Realtime Decision Server 6 applications.

decisionserver62-https-s2i Application template for BRMS Realtime Decision Server 6 HTTPS applications.

eap64-amq-persistent-s2i Application template for EAP 6 A-MQ applications with persistent storage.

eap64-amq-s2i Application template for EAP 6 A-MQ applications built using S2I.

eap64-basic-s2i Application template for EAP 6 applications built using S2I.

eap64-https-s2i Application template for EAP 6 applications built using S2I.

eap64-mongodb-persistent-s2i Application template for EAP 6 MongDB applications with persistent storage.

eap64-mongodb-s2i Application template for EAP 6 MongDB applications built using S2I.

eap64-mysql-persistent-s2i Application template for EAP 6 MySQL applications with persistent storage.

eap64-mysql-s2i Application template for EAP 6 MySQL applications built using S2I.

eap64-postgresql-persistent-s2i Application template for EAP 6 PostgreSQL applications with persistent storage.

eap64-postgresql-s2i Application template for EAP 6 PostgreSQL applications built using S2I.

jenkins-ephemeral Jenkins service, without persistent storage.

jenkins-persistent Jenkins service, with persistent storage.

mongodb-ephemeral MongoDB database service, without persistent storage.

mongodb-persistent MongoDB database service, with persistent storage.

mysql-ephemeral MySQL database service, without persistent storage.

mysql-persistent MySQL database service, with persistent storage.

nodejs-example An example Node.js application with no database.

nodejs-mongodb-example An example Node.js application with a MongoDB database.

postgresql-ephemeral PostgreSQL database service, without persistent storage.

postgresql-persistent PostgreSQL database service, with persistent storage.

Creating Your Own Templates
As you have probably discovered by now, creating and using application templates is
a very powerful tool to have at your disposal when developing software. The Open‐
Shift team has put in a tremendous amount of work to ensure that application tem‐

60 | Chapter 7: Using Application Templates

plates exist and are usable today. The team is continually working on improving the
creation flow so instead of trying to detail this here we refer you to the official Open‐
Shift documentation to ensure you are using the latest tools to create them. But if you
just want to dive in head first, try the following command while inside of the project
you want to create a template for:

oc export all --as-template=myapplication -o json > mytemplate.json

That should give you some JSON to get started with.

Summary
In this chapter, we learned about application templates and how to use them. We cre‐
ated a full Java EE stack with MongoDB using an application template. We then cov‐
ered the available application templates provided out of the box with the all-in-one
image. In the next chapter, we’ll look at how you can determine what your application
is doing when running and how to debug issues.

Summary | 61

CHAPTER 8

Working with Your Application

Applications are great when they are working properly, but inevitably at some point
most applications will need to be debugged. You might also need to tweak your appli‐
cation’s build, or see what resources it has available. In this chapter we will dig into
various tasks related to working with your application, whether as developer or as
part of an operations team. While we have focused on using the OpenShift web con‐
sole so far, in this chapter, we use the command-line tools so you can become more
familiar with them.

Listing Running Instances
Information about running instances of your application can be found on the Pods
page of the OpenShift web console.

If you want to find out what instances are running from the command line, you can
use the oc get pods command:

$ oc get pods
NAME READY STATUS RESTARTS AGE
helloworld-1-build 0/1 Completed 0 37m
helloworld-2-build 0/1 Completed 0 33m
helloworld-3-build 0/1 Completed 0 28m
helloworld-4-build 0/1 Completed 0 11m
helloworld-4-cd3y3 1/1 Running 0 9m

In this list, it is the pods with the Running status that are the instances of your appli‐
cation.

You can get a wealth of information about a specific instance using the oc describe
command:

$ oc describe pod/helloworld-4-cd3y3
Name: helloworld-4-cd3y3

63

Namespace: wfproject
Image(s): 172.30.210.155:5000/wfproject/helloworld@sha256:9c941cb...
Node: origin/10.0.2.15
Start Time: Thu, 17 Mar 2016 11:30:08 +1100
Labels: app=helloworld,deployment=helloworld-4,deploymentconfig=helloworld
Status: Running
...

The labels are particularly important here. If you want to be more selective about
which pods are shown when running oc get pods, you can use the labels to narrow
your search:

$ oc get pods --selector app=helloworld
NAME READY STATUS RESTARTS AGE
helloworld-4-cd3y3 1/1 Running 0 21m

Running oc get pods by default shows you the current state of all the pods. If you
want to monitor the pods as they are created and destroyed in real time, use the --
watch option. This command will show all changes until the command is interrupted.

Container Logs
When an error occurs within your application, generally the first place you want to
look is in the log files. In OpenShift, there are two types of log files: the build logs and
the runtime application logs.

Build Logs
When OpenShift runs a build, it will capture the output of the steps run. This is the
case when using a S2I (Source-to-Image) builder as used for the WildFly application.
Build logs will also be available if you used OpenShift to build an arbitrary Docker
image from a Dockerfile.

The build logs can be accessed from the OpenShift web console by going to the Builds
page for your application. You can view the log live while a build is being run, or after
the build is complete.

If you want to access the build logs using the command-line tools, you first need to
identify which build you want to see the results for. You can see a list of all the builds
that have been completed using the oc get builds command:

$ oc get builds
NAME TYPE FROM STATUS STARTED DURATION
helloworld-1 Source Git@ac3eb48 Complete 23 minutes ago 2m8s
helloworld-2 Source Git@ac3eb48 Complete 19 minutes ago 2m20s
helloworld-3 Source Git@ac3eb48 Complete 15 minutes ago 2m15s
helloworld-4 Source Git@master Running 1 seconds ago 2s

64 | Chapter 8: Working with Your Application

To look at the logs for a specific build, you would then use the oc logs command.
Prefix the name of the build with build/ when identifying it:

$ oc logs build/helloworld-3
W0317 00:11:04.932223 1 builder.go:55] Master version ...
I0317 00:11:05.026730 1 source.go:197] Downloading "https://..." ...
I0317 00:11:10.187732 1 install.go:236] Using "assemble" ...
I0317 00:11:10.187908 1 install.go:236] Using "run" ...
I0317 00:11:10.187951 1 install.go:236] Using "save-artifacts" ...
Found pom.xml... attempting to build with 'mvn package -Popenshift ...'
Apache Maven 3.3.3 ...
Maven home: /usr/local/apache-maven-3.3.3
Java version: 1.8.0_71, vendor: Oracle Corporation
Java home: /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.71-2.b15.el7_2.x86_64/jre
...

If a build shows as still running you can use the --follow option to the oc logs com‐
mand to see updates to the log as they occur.

Application Logs
Application logs is what your application outputs when it is running. OpenShift will
record any output from your application that is sent to the standard output and error
streams.

The application logs can be accessed from the OpenShift web console by going to the
Pods page and then to the pods for your application.

On the command line, to view the logs you should first list the pods for your applica‐
tion and then use the oc logs command for a specific pod:

$ oc logs helloworld-4-cd3y3
===
 JBoss Bootstrap Environment
 JBOSS_HOME: /wildfly
 JAVA: java
 JAVA_OPTS: ...

This will give you the currently collected log output.

As with builds, if you want to monitor the log output live while that instance of your
application is still running, you can use the --follow option to oc logs.

Application Startup Failures
If your application starts up and runs okay then you should always have some logs.
But there is one special case you do need to be aware of—when your application fails
to start up.

Container Logs | 65

When your application fails to start up and exits, OpenShift will attempt to restart the
application. If this keeps occurring, then the pod will be moved into a state called
CrashLoopBackOff. You will see that a pod has entered this state when you use oc get
pods to get a listing of the pods for your application:

helloworld-5-cqlo4 0/1 CrashLoopBackOff 2 1m

If you run oc logs on this pod, you will usually see a less than useful message.

$ oc logs helloworld-5-cqlo4
Error from server: Internal error occurred: Pod "helloworld-5-cqlo4" in
 namespace "wfproject": container "helloworld" is in waiting state.

This is a final error message from OpenShift resulting from the successive failures to
start your application. This is not the log messages from your application.

In this case, to see the logs from the last attempt to start your application, you should
use the --previous option with the oc logs command.

Environment Variables
In more traditional deployment environments, you would use a configuration file to
customize the behavior of your application. When running an application under
Docker, the problem is that you would need to rebuild the image for your application
in order to make a change. This is because the configuration file is part of the Docker
image.

To avoid needing to rebuild the image, you can use use environment variables set
from outside the container. These could be environment variables that are directly
understood by your application, or they could be environment variables that control
additional command-line arguments supplied to the application server being used.

To see a list of what environment variables will be exported to a container when run
by OpenShift you can use the oc set env command with the --list option to query
the deployment configuration for your application.

$ oc set env dc/helloworld --list
deploymentconfigs helloworld, container helloworld
PATH=/opt/app-root/src/bin:/opt/app-root/bin:/usr/local/sbin:/usr/local/bin:...
STI_SCRIPTS_URL=image:///usr/libexec/s2i
STI_SCRIPTS_PATH=/usr/libexec/s2i
HOME=/opt/app-root/src
BASH_ENV=/opt/app-root/etc/scl_enable
ENV=/opt/app-root/etc/scl_enable
PROMPT_COMMAND=. /opt/app-root/etc/scl_enable
WILDFLY_VERSION=10.0.0.Final
MAVEN_VERSION=3.3.3

To add or modify an environment variable, oc set env is once again used, but the
environment variable name and value are supplied:

66 | Chapter 8: Working with Your Application

oc set env dc/helloworld MYSQL_DATABASE=mysql

If you want to update the value of more than one environment variable at the same
time, each can be listed on the same command line separated by a space.

If you want to change more than one environment variable, then they should all be
updated with the one command. This is because the configuration change will by
default trigger a redeployment of your application with the new environment vari‐
ables. Setting the environment variables one at a time would thus cause successive
redeployments.

In addition to being able to update the environment variables when your application
is run, if using the S2I builder, you can also specify the environment variables to be
used when your application is being built. In this case, you need to update the envi‐
ronment variables on the build configuration for your application:

oc set env bc/helloworld MAVEN_ARGS_APPEND='-Dmaven.test.skip=true'

But be aware that when an environment variable is specified for a build configuration
it will also be set when the container is run. This is because the environment variable
is saved as part of the image. If an environment variable needs to have a different
value at runtime than at build time, it needs to be set separately on the deployment
configuration so that it overrides the value inherited from the build configuration.

Editing Configurations
Commands such as oc set env update the configuration for your application
without you needing to know the details. Not everything you may need to do with a
configuration can be done direct through the command line. Sometimes you may
need to edit the configuration yourself.

In a previous chapter we used the oc edit command to add deployment lifecycle
hooks. Using the oc edit command on a selected resource would start up an editor;
the configuration is displayed within the editor and can be changed from the editor.
You could then make changes and save the configuration, with it potentially trigger‐
ing automatically a rebuild, a redeployment, or some other action.

Since configurations can be edited for many different reasons, we can’t cover them all
here. The OpenShift documentation goes into more detail, but there are a few specific
resources that can be useful when editing configurations.

The first is the oc types command described back when we were introducing Open‐
Shift. The text output of the oc types command is a quick cheat sheet for under‐
standing the key concepts and types in OpenShift.

To understand what can be set in a configuration, take a look at the REST API docu‐
mentation.

Editing Configurations | 67

http://red.ht/1WKU0J6
http://red.ht/1WKU0J6

A quicker way to get a description of what can be set is to use the oc explain com‐
mand, which can be used on the name of a resource, or the path to a specific setting.
The oc set env command, for example, updates the dc.spec.template.spec.con
tainers.env setting. We can see a description for that by running the following:

$ oc explain dc.spec.template.spec.containers.env
RESOURCE: env <[]Object>

DESCRIPTION:
 List of environment variables to set in the container. Cannot be updated.

 EnvVar represents an environment variable present in a Container.

FIELDS:
 name <string> -required-
 Name of the environment variable. Must be a C_IDENTIFIER.

 value <string>
 Variable references $(VAR_NAME) are expanded using the previous defined
 environment variables in the container and any service environment
 variables. If a variable cannot be resolved, the reference in the input
 string will be unchanged. The $(VAR_NAME) syntax can be escaped with a
 double $$, ie: $$(VAR_NAME). Escaped references will never be expanded,
 regardless of whether the variable exists or not. Defaults to "".

 valueFrom <Object>
 Source for the environment variable's value. Cannot be used if value is not
 empty.

So we could have added or updated the environment variables by using oc edit
instead of oc set env.

If using oc edit, by default the configuration will be provided as YAML. You can also
edit it as JSON by supplying the -o json option to oc edit.

Debugging an Application
Even if your application starts up correctly you may find that it doesn’t always behave
as expected. This could be due to an issue with the runtime environment, or the con‐
figuration, whether that be a configuration file or environment variables.

In this case it can be useful to open up an interactive shell within the container where
your application is running.

The command for running an interactive shell is oc rsh, but first you need to iden‐
tify a running instance of your application. This is done using the oc get pods com‐
mand, which we covered earlier. You can then use oc rsh on the selected pod:

$ oc rsh helloworld-8-fnzg5
sh-4.2$ env | grep OPENSHIFT

68 | Chapter 8: Working with Your Application

OPENSHIFT_BUILD_NAME=helloworld-6
OPENSHIFT_BUILD_SOURCE=https://github.com/GrahamDumpleton/book-helloworld.git
OPENSHIFT_BUILD_NAMESPACE=wfproject
OPENSHIFT_BUILD_REFERENCE=master

If you do not need an interactive shell and just want to run a command and have it
return immediately, you can use oc exec:

$ oc exec helloworld-8-fnzg5 env | grep OPENSHIFT
OPENSHIFT_BUILD_SOURCE=https://github.com/GrahamDumpleton/book-helloworld.git
OPENSHIFT_BUILD_REFERENCE=master
OPENSHIFT_BUILD_NAME=helloworld-6
OPENSHIFT_BUILD_NAMESPACE=wfproject

The commands you have available to run within the container depend on what the
Docker base image has provided. The ability to create an interactive shell when run‐
ning oc rsh is dependent on a shell program existing as /bin/sh within the image.
Docker base images built with debugging in mind generally still provide you with
common tools such as ps, top, and vi. A minimal Docker image may provide very few
standard UNIX tools and you may find debugging more difficult, as oc rsh will not
work if /bin/sh is missing from the image.

Being able to bring up an interactive shell or run a command in the container your
application is running is also obviously dependent on your application being able to
run. We mentioned previously the case of where an application may not even start up.
Some clues as to what is wrong in those cases can be using the oc logs command,
ensuring the --previous option is used if the status of the pods has entered Crash‐
LoopBackOff mode.

To figure out why your application is having issues in this case you will not be able to
use oc rsh or oc exec. Instead, use the oc debug command.

Whereas the oc rsh and oc exec commands are executed against a specific running
instance of your application, the oc debug command is pointed at the name of the
deployment configuration for your application. What the oc debug command will
then do is start up an instance of the image for your application, but instead of run‐
ning the normal application command, it will run an interactive shell instead.

$ oc debug dc/helloworld
Debugging with pod/debug-helloworld, original command: <image entrypoint>
Waiting for pod to start ...

Hit enter for command prompt

sh-4.2$

At this point your application has not been started. You can check that any required
environment variables have been set, that any configuration files are correct, and that

Debugging an Application | 69

all your application files are present and correct. You can also start up your applica‐
tion and see why it is failing to start.

If you are using an S2I builder to build and deploy your application, this can usually
be done by running the run script from the S2I scripts directory:

sh-4.2$ $STI_SCRIPTS_PATH/run
===
 JBoss Bootstrap Environment
 JBOSS_HOME: /wildfly
 JAVA: java
 JAVA_OPTS: ...

Deleting an Application
Finished working with the example applications in this book and want to remove all
traces of them? There are a couple of ways this can be done.

If you only have the one application within the project namespace you are working
in, the simplest way is to delete the whole project. This can be done using the oc
delete project command.

$ oc delete project wfproject
project "wfproject" deleted

If you have other applications in the same project you want to keep, or wish to keep
the project around after cleaning up the application, you need to be more selective
about what is deleted. This is still a relatively easy task if the labels we mentioned ear‐
lier are used.

If you remember correctly, we used the app label of helloworld to list the pods corre‐
sponding to the instances of our application. We are going to use this same label to
delete our application.

Before we do that, let’s check to see what would be deleted by running the oc get
all command with the selector and the app label.

oc get all --selector app=helloworld

This will output a list of everything that would be deleted if we used the same label.
Once you know you aren’t going to delete something you want, you can then run oc
delete all with the same selector label:

$ oc delete all --selector app=helloworld
buildconfig "helloworld" deleted
imagestream "helloworld" deleted
deploymentconfig "helloworld" deleted
route "helloworld" deleted
service "helloworld" deleted
pod "helloworld-8-fnzg5" deleted

70 | Chapter 8: Working with Your Application

Summary
In this chapter, we took a quick look at some of the commands you can use to check
on the state of your application, what is being logged, how to edit configurations as
well as how to debug your application. This only scratches the surface of what you
can do using the oc command-line tool. In the next chapter, we’ll cover one further
example, which is how to build and deploy an application using a Docker image. For
further details on other tasks that can be performed using the oc command, run oc
help. You can also use the --help option on specific commands for details about that
command as well as examples.

Summary | 71

CHAPTER 9

Deploying an Existing Docker Image

In the previous chapters we learned some key features of the OpenShift container
application platform including the powerful source-to-image feature. If you recall,
the S2I feature allows you to interact with the platform from a pure source code per‐
spective. While this is awesome, there may be occasions when you want to deploy an
existing Docker image to the platform. You will be happy to know that OpenShift
supports this common request. After all, what good is a container platform if doesn’t
support the running of containers that have already been built? In this chapter we are
going to deploy a Docker image from the public Docker Hub.

What Is Docker Hub?
If you are not familiar with Docker-based containers, chances are you haven’t heard
about Docker Hub before. Don’t worry, it is a pretty simple concept to understand.
However, to understand the need for Docker Hub, you first need to understand how a
Docker image is actually built.

Unless they are using OpenShift, most developers don’t have the luxury of a S2I
project that automatically creates Docker images on the fly based on their source
code. What this means is that when using plain Docker, a developer has to do a cou‐
ple of things, namely create Dockerfiles and perform builds.

The Dockerfile
A Dockerfile is a text document that defines how an image should be created.
Depending on the complexity of the application, the Dockerfile can quickly become
verbose and unwieldy. As an example, here is the Dockerfile for the official popular
Tomcat 8 servlet container:

73

FROM java:8-jre

ENV CATALINA_HOME /usr/local/tomcat
ENV PATH $CATALINA_HOME/bin:$PATH
RUN mkdir -p "$CATALINA_HOME"
WORKDIR $CATALINA_HOME

see https://www.apache.org/dist/tomcat/tomcat-8/KEYS
RUN gpg --keyserver pool.sks-keyservers.net --recv-keys \
 05AB33110949707C93A279E3D3EFE6B686867BA6 \
 07E48665A34DCAFAE522E5E6266191C37C037D42 \
 47309207D818FFD8DCD3F83F1931D684307A10A5 \
 541FBE7D8F78B25E055DDEE13C370389288584E7 \
 61B832AC2F1C5A90F0F9B00A1C506407564C17A3 \
 79F7026C690BAA50B92CD8B66A3AD3F4F22C4FED \
 9BA44C2621385CB966EBA586F72C284D731FABEE \
 A27677289986DB50844682F8ACB77FC2E86E29AC \
 A9C5DF4D22E99998D9875A5110C01C5A2F6059E7 \
 DCFD35E0BF8CA7344752DE8B6FB21E8933C60243 \
 F3A04C595DB5B6A5F1ECA43E3B7BBB100D811BBE \
 F7DA48BB64BCB84ECBA7EE6935CD23C10D498E23

ENV TOMCAT_MAJOR 8
ENV TOMCAT_VERSION 8.0.32
ENV TOMCAT_TGZ_URL https://www.apache.org/dist/tomcat/tomcat-$TOMCAT_MAJOR/ \
v$TOMCAT_VERSION/bin/apache-tomcat-$TOMCAT_VERSION.tar.gz

RUN set -x \
 && curl -fSL "$TOMCAT_TGZ_URL" -o tomcat.tar.gz \
 && curl -fSL "$TOMCAT_TGZ_URL.asc" -o tomcat.tar.gz.asc \
 && gpg --verify tomcat.tar.gz.asc \
 && tar -xvf tomcat.tar.gz --strip-components=1 \
 && rm bin/*.bat \
 && rm tomcat.tar.gz*

EXPOSE 8080
CMD ["catalina.sh", "run"]

But wait, that doesn’t look so complicated does it? Well, at first glance, this may
appear to be true, but if you dig in just a bit further, you can see that this Dockerfile
actually inherits the java:8-jre image. To really understand the image pipeline, you
would also have to examine the FROM Dockerfile. The FROM Dockerfile contains
the following information at the very top:

FROM buildpack-deps:jessie-curl

I have omitted the full Dockerfile for brevity’s sake. If you would
like to view the full Dockerfile for _java:8-jre, visit the official
repository.

74 | Chapter 9: Deploying an Existing Docker Image

https://hub.docker.com/_/java/
https://hub.docker.com/_/java/

What’s interesting is that the FROM image for Java 8 is actually buildpack-
deps:jessie-curl. The entire Docker image pipeline for a Tomcat server is as fol‐
lows:

tomcat:8.0->_java:8-jre->_buildpack-deps:jessie-curl->debian:jessie

Working with Dockerfiles can certainly be helpful but it can also get confusing pretty
quickly. Not only that, if you want to run the official Tomcat 8 Docker image, you
have to dig in to the details just a bit to determine what underlying technology is
actually being used. In this example, it appears that the Debian Linux distribution is
used. While that may be fine for some, it may not be for others that are running in
production.

Knowing you have a fully supported platform like OpenShift where you know the
image pipeline is supported and verified by Red Hat can really ease any reluctance
you may have about using Docker-based containers in a production environment.

The Docker Build
Once you have crafted that perfect chain of Dockerfiles, including one to actually
copy their .war file into the container, a build is needed to actually create the image.
The Docker build process is actually pretty simple once your Dockerfile is error-free.
It can be performed with a command like the following:

$ docker build -t imagename .

This will resolve all of the FROM images in the Dockerfile chain and produce an
image based on the Dockerfile in the current directory. Once the image has been cre‐
ated, you can tag the image to specify the version number.

Sharing the Docker Image
Whew, after all of that we now have a new Docker image. The next step is to actually
share that image with other people so they can run it. This is where Docker Hub
comes in.

In its simplest form, Docker Hub is a public repository where users can publish their
images for use by others. Remember signing up for a GitHub account earlier in this
book? Well, Docker Hub is like GitHub but for container images instead of source
code.

Running a Docker Hub Image on OpenShift
You are probably going to send me mean and nasty email after you realize this entire
chapter was written to introduce you to one single OpenShift command. That’s okay,
I probably deserve it, but I did think it was important for you to get a glimpse of the
process of creating and distributing images. But at this point you probably just want

Running a Docker Hub Image on OpenShift | 75

to deploy the Tomcat 8 image, right? Good news. Open your favorite terminal and
enter the following commands, assuming you have authenticated to your OpenShift
server:

$ oc new-project tomcat8 --display-name='Tomcat 8'
$ oc new-app tomcat:8.0

You should see the following information after entering the preceding command:

--> Found Docker image b9c02aa (12 days old) from Docker Hub for "tomcat:8.0"
 * An image stream will be created as "tomcat:8.0" that will track this image
 * This image will be deployed in deployment config "tomcat"
 * [WARNING] Image "tomcat" runs as the 'root' user which may not be permitted
 by your cluster administrator
 * Port 8080/tcp will be load balanced by service "tomcat"
--> Creating resources with label app=tomcat ...
 ImageStream "tomcat" created
 DeploymentConfig "tomcat" created
 Service "tomcat" created
--> Success
 Run 'oc status' to view your app.

As you can see in the output, OpenShift realized that you wanted to use the Tomcat
8.0 image and it didn’t have it in the OpenShift registry. Since the image wasn’t avail‐
able in the OpenShift registry, the platform then connected to the public Docker Hub
registry to look for the image. Once it was found, it was downloaded (pulled) and
stored in the OpenShift registry. Digging a bit deeper, the platform then extracted
some meta-data and created Kubernetes objects for the image and finally deployed it
inside of a pod.

Routes
Now that we have our fancy new public Tomcat 8 servlet container deployed to the
platform, let’s test it out. Open your favorite browser and log in to the OpenShift web
console. Once you have been authenticated, you should see the projects shown in
Figure 9-1.

76 | Chapter 9: Deploying an Existing Docker Image

Figure 9-1. Projects

After clicking on the new Tomcat 8 project we created on the command line, you will
see the project overview page shown in Figure 9-2.

Figure 9-2. Project overview

What’s different about this project compared to our first application using WildFly in
Chapter 4? Give up? A route doesn’t exist for the Tomcat 8 server yet. This means that
although the Tomcat Docker image has been deployed in a container, it isn’t yet
accessible via the network. In order for Tomcat 8 to be visible, we need to expose the
service as an external route. Routes are for externalizing the ports of an application or
making it available as Internet facing. This is a fairly easy process. Simply click the

Routes | 77

Create Route link inside of the SERVICE box. On the next page, you will be presented
with the screen shown in Figure 9-3.

Figure 9-3. Create route

For this example, leave all of the values as they are and simply click the Create button.
This will generate a default route using the xip.io service we discussed previously in
this book.

After you click the Create button, you will now see that a route is displayed in the
SERVICE box, as Figure 9-4 shows.

Figure 9-4. Exposed route

What are you waiting on? Go ahead, click the route. You will be greeted with the
familiar Tomcat welcome page, as shown in Figure 9-5.

78 | Chapter 9: Deploying an Existing Docker Image

Figure 9-5. Tomcat application

Congratulations! You just deployed your very own Tomcat 8 server from the public
Docker Hub. Want to scale this puppy up? Go ahead, knock yourself out.

While deploying this public Docker-based image was certainly cool, you have to con‐
sider what’s missing here. The biggest thing to remember is that an image such as this
doesn’t take advantage of the platform’s S2I build and deploy pipeline. This means
you can’t actually deploy code to the Tomcat container and have the build automati‐
cally happen. In this case, you would have to either create yet another Dockerfile that
copies your built source code into the appropriate location or manually copy over
a .war file into the running container. For that reason, you should use the S2I-enabled
Tomcat 8 image that is shipped with the OpenShift platform. Using that builder
image will save you a ton of time and headaches when deploying application code.

Summary
In this chapter, we learned a bit about the process to create and build Docker-based
images. We also learned about Docker Hub and how to deploy an image that is hos‐
ted in a public external repository. Finally, we learned how to create a route so that
the container can be accessed.

Summary | 79

Afterword

All good things come to an end, and so we must now end this book. We hope you
have enjoyed it and found it useful.

We know we could have filled many more chapters as we peeled back the layers of
OpenShift, but our intent with this book was to get you up and running with the lat‐
est version of OpenShift as quickly as possible. We hope you will continue to explore
the seemingly neverending possibilities of what a modern container application plat‐
form such as OpenShift can provide.

What We Covered
Here’s what we covered:

• The components that go to make up a container application platform
• Basic terminology explaining the OpenShift components
• How to install your own copy of OpenShift
• How to create an application on OpenShift
• How to add persistent storage to your application
• How to automate the build and deployment of your application code
• How to scale up your application as you get more users
• How to choose the right deployement strategy for your application
• How to simplify application deployment using templates
• How to use application logs and debug deployment of your application
• How to use environment variables to customize your application’s behavior
• How to deploy applications based on a Docker image

81

Final Words
The whole ecosystem that exists around container based deployment is still a rapidly
evolving area. Standardization of key components is occuring under the umbrella of
the Open Container Initiative overseen by the Linux Foundation.

Even with the developing standards, there is still a large scope for products to distin‐
guish themselves and offer unique functionality. To that end, the OpenShift team is
commited to pushing the state of the art forward and provide you with a platform
that we believe you will find compelling.

As we continue to develop OpenShift, check the OpenShift website and blog for the
latest and greatest features. If you have suggestions for the platform you can always
write to openshift@redhat.com or provide feedback via the OpenShift Origin project.

One of the things we love about working with OpenShift is that the more you use it,
the more possibilities emerge—so the most important thing at this point is for you to
get coding!

82 | Afterword

https://www.opencontainers.org
http://collabprojects.linuxfoundation.org
mailto:openshift@redhat.com
https://github.com/openshift/origin

About the Authors
Grant Shipley is a Senior Manager at Red Hat focussed on cloud technologies. He has
over 15 years of software development experience with Java and PHP. Grant also con‐
tributes to open source projects and builds mobile applications.

Graham Dumpleton is a Developer Advocate for OpenShift at Red Hat. He’s an
active member of the Python software developer community and the author of
mod_wsgi, a popular module for hosting Python web applications in conjunction
with the Apache HTTPD web server.

Colophon
The animal on the cover of OpenShift for Developers is a black-headed caique (Pionites
melanocephalus), also known as the black-headed or black-capped parrot. They
inhabit mostly humid forest areas in the Amazon (north of the Amazon River), Brazil
(to the west of the Ucayali River), northern Bolivia, Colombia, Ecuador, French Gui‐
ana, Guyana, Peru, Suriname, and Venezuela.

The black-headed caique is medium-small with a short tail, black crown, yellow-
orangeish head, white belly, yellow thighs, and green wings, back, and upper tail.
Males and females have identical plumage; the only way to determine gender is
through surgical sexing or DNA sexing—DNA sexing is much safer for the birds than
the former. Wild caiques often have a brownish stained breast that is white on captive
birds.

Black-headed caiques are often found in pairs or small flocks of up to 10 birds (some‐
times up to 30). They mostly eat flowers, pulp, seeds, and possibly insects. The two
subspecies of the black-headed caique—P.m. melanocephalus and P.m. pallidus—
hybridize freely and often have similar coloring.

These birds are popular among parrot breeders and keepers. They make for energetic
pets and require large cages filled with toys and perches. The minimum cage size rec‐
ommended is 24'' L × 24'' W × 36'' H with a maximum bar spacing of 1''. Black-
headed parrots use their beaks more than other parrot species and tend to bite. They
mimic human speech poorly, often mimicking other sounds such as alarms, smoke
detectors, microwave beeps, laughs, and whistles. Caiques also combine sounds in
their vocabulary to form new sounds.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Heck’s Nature and Science. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword
	Introduction
	Who Should Read This Book
	Why We Wrote This Book
	Navigating This Book
	Online Resources
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Grant
	Graham

	Chapter 1. Introduction to a Container Application Platform
	Docker
	Kubernetes to the Rescue?
	OpenShift
	Web-Based Console
	Command-Line Tool
	Source-to-Image
	Integrated Logging and Metrics

	Summary

	Chapter 2. Concepts You Need to Understand
	Interacting with OpenShift
	The Deployed Application
	Build and Deployment Process
	Online Cheat Sheet
	Summary

	Chapter 3. Installing the All-in-One VM
	Software Requirements
	Install VirtualBox
	Install Vagrant
	Vagrant init
	Change Your Memory Configuration
	Start Things Up
	Download the Latest oc Command-Line Tool

	Initial Login from the Web Console
	Now Log In from the Command Line
	Now Log In to the Web Console as a Normal User
	Create a GitHub Account
	Summary

	Chapter 4. Developing and Deploying Your First Application
	Understanding the Tools
	Git
	WildFly

	Creating Our First Application
	Creating a Copy of the Sample Application
	Creating the Application

	Making a Code Change and Starting a New Build
	Summary

	Chapter 5. Adding Dependencies and a Database
	Creating the Base Application
	Forking the Repository and Deploying the Application
	Adding the Database to the Application

	Adding a REST Endpoint
	Summary

	Chapter 6. Deploying and Scaling Your Application
	Automatic Deployments Using Webhooks
	Adding Our Webhook URI to GitHub
	Visibility of Your OpenShift Instance

	Scaling Your Application
	Scaling from the Web Console
	Applications Suitable for Scaling
	Automatic Scaling of an Application

	Deployment Strategies
	Rolling Strategy
	Recreate Strategy
	Changing the Strategy
	Implementing Custom Strategies

	Application Health Checks
	Deployment Lifecycle Hooks
	Application Rollback
	Summary

	Chapter 7. Using Application Templates
	What Is an Application Template?
	Benefits of Using Templates
	Using Our First Application Template
	Creating Your Own Templates
	Summary

	Chapter 8. Working with Your Application
	Listing Running Instances
	Container Logs
	Build Logs
	Application Logs
	Application Startup Failures

	Environment Variables
	Editing Configurations
	Debugging an Application
	Deleting an Application
	Summary

	Chapter 9. Deploying an Existing Docker Image
	What Is Docker Hub?
	The Dockerfile
	The Docker Build
	Sharing the Docker Image

	Running a Docker Hub Image on OpenShift
	Routes
	Summary

	Afterword
	What We Covered
	Final Words

	About the Authors
	Colophon

